Cargando…

Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer

Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves running functional genetic screens, such as CRISPR, followed by manual triage of significantly enriched gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Gogleva, Anna, Polychronopoulos, Dimitris, Pfeifer, Matthias, Poroshin, Vladimir, Ughetto, Michaël, Martin, Matthew J., Thorpe, Hannah, Bornot, Aurelie, Smith, Paul D., Sidders, Ben, Dry, Jonathan R., Ahdesmäki, Miika, McDermott, Ultan, Papa, Eliseo, Bulusu, Krishna C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964738/
https://www.ncbi.nlm.nih.gov/pubmed/35351890
http://dx.doi.org/10.1038/s41467-022-29292-7
_version_ 1784678284476284928
author Gogleva, Anna
Polychronopoulos, Dimitris
Pfeifer, Matthias
Poroshin, Vladimir
Ughetto, Michaël
Martin, Matthew J.
Thorpe, Hannah
Bornot, Aurelie
Smith, Paul D.
Sidders, Ben
Dry, Jonathan R.
Ahdesmäki, Miika
McDermott, Ultan
Papa, Eliseo
Bulusu, Krishna C.
author_facet Gogleva, Anna
Polychronopoulos, Dimitris
Pfeifer, Matthias
Poroshin, Vladimir
Ughetto, Michaël
Martin, Matthew J.
Thorpe, Hannah
Bornot, Aurelie
Smith, Paul D.
Sidders, Ben
Dry, Jonathan R.
Ahdesmäki, Miika
McDermott, Ultan
Papa, Eliseo
Bulusu, Krishna C.
author_sort Gogleva, Anna
collection PubMed
description Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves running functional genetic screens, such as CRISPR, followed by manual triage of significantly enriched genes. This triage process to identify ‘high value’ hits resulting from the CRISPR screen involves manual curation that requires specialized knowledge and can take even experts several months to comprehensively complete. To find key drivers of resistance faster we build a recommendation system on top of a heterogeneous biomedical knowledge graph integrating pre-clinical, clinical, and literature evidence. The recommender system ranks genes based on trade-offs between diverse types of evidence linking them to potential mechanisms of EGFRi resistance. This unbiased approach identifies 57 resistance markers from >3,000 genes, reducing hit identification time from months to minutes. In addition to reproducing known resistance markers, our method identifies previously unexplored resistance mechanisms that we prospectively validate.
format Online
Article
Text
id pubmed-8964738
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89647382022-04-20 Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer Gogleva, Anna Polychronopoulos, Dimitris Pfeifer, Matthias Poroshin, Vladimir Ughetto, Michaël Martin, Matthew J. Thorpe, Hannah Bornot, Aurelie Smith, Paul D. Sidders, Ben Dry, Jonathan R. Ahdesmäki, Miika McDermott, Ultan Papa, Eliseo Bulusu, Krishna C. Nat Commun Article Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves running functional genetic screens, such as CRISPR, followed by manual triage of significantly enriched genes. This triage process to identify ‘high value’ hits resulting from the CRISPR screen involves manual curation that requires specialized knowledge and can take even experts several months to comprehensively complete. To find key drivers of resistance faster we build a recommendation system on top of a heterogeneous biomedical knowledge graph integrating pre-clinical, clinical, and literature evidence. The recommender system ranks genes based on trade-offs between diverse types of evidence linking them to potential mechanisms of EGFRi resistance. This unbiased approach identifies 57 resistance markers from >3,000 genes, reducing hit identification time from months to minutes. In addition to reproducing known resistance markers, our method identifies previously unexplored resistance mechanisms that we prospectively validate. Nature Publishing Group UK 2022-03-29 /pmc/articles/PMC8964738/ /pubmed/35351890 http://dx.doi.org/10.1038/s41467-022-29292-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gogleva, Anna
Polychronopoulos, Dimitris
Pfeifer, Matthias
Poroshin, Vladimir
Ughetto, Michaël
Martin, Matthew J.
Thorpe, Hannah
Bornot, Aurelie
Smith, Paul D.
Sidders, Ben
Dry, Jonathan R.
Ahdesmäki, Miika
McDermott, Ultan
Papa, Eliseo
Bulusu, Krishna C.
Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
title Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
title_full Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
title_fullStr Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
title_full_unstemmed Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
title_short Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
title_sort knowledge graph-based recommendation framework identifies drivers of resistance in egfr mutant non-small cell lung cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964738/
https://www.ncbi.nlm.nih.gov/pubmed/35351890
http://dx.doi.org/10.1038/s41467-022-29292-7
work_keys_str_mv AT goglevaanna knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT polychronopoulosdimitris knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT pfeifermatthias knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT poroshinvladimir knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT ughettomichael knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT martinmatthewj knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT thorpehannah knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT bornotaurelie knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT smithpauld knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT siddersben knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT dryjonathanr knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT ahdesmakimiika knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT mcdermottultan knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT papaeliseo knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer
AT bulusukrishnac knowledgegraphbasedrecommendationframeworkidentifiesdriversofresistanceinegfrmutantnonsmallcelllungcancer