Cargando…
Theoretical studies on quantum imaging with time-integrated single-photon detection under realistic experimental conditions
We study a quantum-enhanced differential measurement scheme that uses quantum probes and single-photon detectors to measure a minute defect in the absorption parameter of an analyte under investigation. For the purpose, we consider two typical non-classical states of light as a probe, a twin-Fock st...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964742/ https://www.ncbi.nlm.nih.gov/pubmed/35351945 http://dx.doi.org/10.1038/s41598-022-09186-w |
Sumario: | We study a quantum-enhanced differential measurement scheme that uses quantum probes and single-photon detectors to measure a minute defect in the absorption parameter of an analyte under investigation. For the purpose, we consider two typical non-classical states of light as a probe, a twin-Fock state and a two-mode squeezed vacuum state. Their signal-to-noise ratios (SNRs) that quantifies the capability of detecting the defect are compared with a corresponding classical imaging scheme that employs a coherent state input. A quantitative comparison is made in terms of typical system imperfections such as photon loss and background noise that are common in practice. It is shown that a quantum enhancement in SNR can be described generally by the Mandel Q-parameter and the noise-reduction-factor, which characterize an input state that is incident to the analyte. We thereby identify the conditions under which the quantum enhancement remains and can be further increased. We expect our study to provide a guideline for improving the SNR in quantum imaging experiments employing a differential measurement scheme with time-integrated single-photon detectors. |
---|