Cargando…
Geometric and Dosimetric Evaluation of the Automatic Delineation of Organs at Risk (OARs) in Non-Small-Cell Lung Cancer Radiotherapy Based on a Modified DenseNet Deep Learning Network
PURPOSE: To introduce an end-to-end automatic segmentation model for organs at risk (OARs) in thoracic CT images based on modified DenseNet, and reduce the workload of radiation oncologists. MATERIALS AND METHODS: The computed tomography (CT) images of 36 lung cancer patients were included in this s...
Autores principales: | Zhang, Fuli, Wang, Qiusheng, Yang, Anning, Lu, Na, Jiang, Huayong, Chen, Diandian, Yu, Yanjun, Wang, Yadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964972/ https://www.ncbi.nlm.nih.gov/pubmed/35371991 http://dx.doi.org/10.3389/fonc.2022.861857 |
Ejemplares similares
-
Applying a novel two-step deep learning network to improve the automatic delineation of esophagus in non-small cell lung cancer radiotherapy
por: Zhang, Fuli, et al.
Publicado: (2023) -
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023) -
Three-dimensional DenseNet self-attention neural network for automatic detection of student’s engagement
por: Mehta, Naval Kishore, et al.
Publicado: (2022) -
Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net
por: Aldoj, Nader, et al.
Publicado: (2020)