Cargando…

Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma

Background: Cohesin is a highly conserved and ubiquitously expressed protein complex. While increasing evidence suggests that cohesin dysregulation is vital in the carcinogenesis of numerous malignancies, little is known about the prognostic values and potential mechanisms of cohesin subunits and di...

Descripción completa

Detalles Bibliográficos
Autores principales: Gan, Wenqiang, Wang, Weiqi, Li, Tiegang, Zhang, Rixin, Hou, Yufang, Lv, Silin, Zeng, Zifan, Yan, Zheng, Yang, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965109/
https://www.ncbi.nlm.nih.gov/pubmed/35371307
http://dx.doi.org/10.7150/jca.66949
_version_ 1784678362276429824
author Gan, Wenqiang
Wang, Weiqi
Li, Tiegang
Zhang, Rixin
Hou, Yufang
Lv, Silin
Zeng, Zifan
Yan, Zheng
Yang, Min
author_facet Gan, Wenqiang
Wang, Weiqi
Li, Tiegang
Zhang, Rixin
Hou, Yufang
Lv, Silin
Zeng, Zifan
Yan, Zheng
Yang, Min
author_sort Gan, Wenqiang
collection PubMed
description Background: Cohesin is a highly conserved and ubiquitously expressed protein complex. While increasing evidence suggests that cohesin dysregulation is vital in the carcinogenesis of numerous malignancies, little is known about the prognostic values and potential mechanisms of cohesin subunits and direct regulators in esophageal carcinoma (ESCA). Methods: RNA-sequencing data from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) were used. The subunits and regulators of cohesin affecting the prognosis of ESCA were screened by Kaplan-Meier survival analysis; univariate and multivariate Cox regression analyses were performed; and the receiver-operating characteristic (ROC) curve was determined. The ESCA hazard model and nomogram map were constructed by integrating the clinical data. We used functional analysis and protein-protein interaction (PPI) networks to explore underlying pathways. Finally, immunohistochemistry was performed to examine the expression levels of cohesin subunits in tissue microarray (TMA). Results: Transcriptome data from multiple ESCA patient datasets showed cohesin subunits SMC1A, SMC1B, SMC3, STAG1, STAG2, RAD21, and cohesin regulators including ESCO2, NIPBL, MAU2, WAPL, PDS5A and PDS5B were all upregulated in ESCA tissues compared to normal tissues. Survival analysis demonstrated that high STAG2 expression was significantly associated with poorer overall survival (OS) and progression-free survival (PFS) in esophageal adenocarcinoma (EAC). In contrast, high RAD21 expression was significantly correlated with better OS in esophageal squamous cell carcinoma (ESCC). Moreover, STAG2 and RAD21 were identified as independent prognostic factors and predictive biomarkers in EAC and ESCC, respectively. Functional enrichment analysis further revealed that STAG2 and RAD21 were mainly involved in the mitotic nuclear division, DNA repair, angiogenesis, epithelial-mesenchymal transition (EMT), and oncogenic signaling pathways. PPI analysis illustrated that STAG2 and RAD21 could cross-talk through cancer-associated modules and performed the core roles of the whole PPI network. Using TMA, STAG2 protein expression positively correlated with lymph node metastasis and advanced clinical stage of EAC patients, whereas there was a negative correlation between RAD21 protein expression and the malignant clinicopathological parameters in ESCC. Conclusion: These findings suggest that STAG2 and RAD21 can be used as predictive biomarkers for risk assessment and prognostic stratification in ESCA, which provide potential novel insights into molecular targets of ESCA.
format Online
Article
Text
id pubmed-8965109
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-89651092022-04-01 Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma Gan, Wenqiang Wang, Weiqi Li, Tiegang Zhang, Rixin Hou, Yufang Lv, Silin Zeng, Zifan Yan, Zheng Yang, Min J Cancer Research Paper Background: Cohesin is a highly conserved and ubiquitously expressed protein complex. While increasing evidence suggests that cohesin dysregulation is vital in the carcinogenesis of numerous malignancies, little is known about the prognostic values and potential mechanisms of cohesin subunits and direct regulators in esophageal carcinoma (ESCA). Methods: RNA-sequencing data from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) were used. The subunits and regulators of cohesin affecting the prognosis of ESCA were screened by Kaplan-Meier survival analysis; univariate and multivariate Cox regression analyses were performed; and the receiver-operating characteristic (ROC) curve was determined. The ESCA hazard model and nomogram map were constructed by integrating the clinical data. We used functional analysis and protein-protein interaction (PPI) networks to explore underlying pathways. Finally, immunohistochemistry was performed to examine the expression levels of cohesin subunits in tissue microarray (TMA). Results: Transcriptome data from multiple ESCA patient datasets showed cohesin subunits SMC1A, SMC1B, SMC3, STAG1, STAG2, RAD21, and cohesin regulators including ESCO2, NIPBL, MAU2, WAPL, PDS5A and PDS5B were all upregulated in ESCA tissues compared to normal tissues. Survival analysis demonstrated that high STAG2 expression was significantly associated with poorer overall survival (OS) and progression-free survival (PFS) in esophageal adenocarcinoma (EAC). In contrast, high RAD21 expression was significantly correlated with better OS in esophageal squamous cell carcinoma (ESCC). Moreover, STAG2 and RAD21 were identified as independent prognostic factors and predictive biomarkers in EAC and ESCC, respectively. Functional enrichment analysis further revealed that STAG2 and RAD21 were mainly involved in the mitotic nuclear division, DNA repair, angiogenesis, epithelial-mesenchymal transition (EMT), and oncogenic signaling pathways. PPI analysis illustrated that STAG2 and RAD21 could cross-talk through cancer-associated modules and performed the core roles of the whole PPI network. Using TMA, STAG2 protein expression positively correlated with lymph node metastasis and advanced clinical stage of EAC patients, whereas there was a negative correlation between RAD21 protein expression and the malignant clinicopathological parameters in ESCC. Conclusion: These findings suggest that STAG2 and RAD21 can be used as predictive biomarkers for risk assessment and prognostic stratification in ESCA, which provide potential novel insights into molecular targets of ESCA. Ivyspring International Publisher 2022-03-06 /pmc/articles/PMC8965109/ /pubmed/35371307 http://dx.doi.org/10.7150/jca.66949 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Gan, Wenqiang
Wang, Weiqi
Li, Tiegang
Zhang, Rixin
Hou, Yufang
Lv, Silin
Zeng, Zifan
Yan, Zheng
Yang, Min
Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma
title Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma
title_full Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma
title_fullStr Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma
title_full_unstemmed Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma
title_short Prognostic Values and Underlying Regulatory Network of Cohesin Subunits in Esophageal Carcinoma
title_sort prognostic values and underlying regulatory network of cohesin subunits in esophageal carcinoma
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965109/
https://www.ncbi.nlm.nih.gov/pubmed/35371307
http://dx.doi.org/10.7150/jca.66949
work_keys_str_mv AT ganwenqiang prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT wangweiqi prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT litiegang prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT zhangrixin prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT houyufang prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT lvsilin prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT zengzifan prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT yanzheng prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma
AT yangmin prognosticvaluesandunderlyingregulatorynetworkofcohesinsubunitsinesophagealcarcinoma