Cargando…

3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration

Corneal regeneration has always been a challenge due to its sophisticated structure and undesirable keratocyte-fibroblast transformation. Herein, we propose 3D printing of a biomimetic epithelium/stroma bilayer implant for corneal regeneration. Gelatin methacrylate (GelMA) and long-chain poly(ethyle...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Binbin, Wang, Jie, Xie, Mengtian, Xu, Miaoyi, Zhang, Yahan, Hao, Huijie, Xing, Xiaoli, Lu, William, Han, Quanhong, Liu, Wenguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965162/
https://www.ncbi.nlm.nih.gov/pubmed/35386466
http://dx.doi.org/10.1016/j.bioactmat.2022.01.034
_version_ 1784678374725124096
author He, Binbin
Wang, Jie
Xie, Mengtian
Xu, Miaoyi
Zhang, Yahan
Hao, Huijie
Xing, Xiaoli
Lu, William
Han, Quanhong
Liu, Wenguang
author_facet He, Binbin
Wang, Jie
Xie, Mengtian
Xu, Miaoyi
Zhang, Yahan
Hao, Huijie
Xing, Xiaoli
Lu, William
Han, Quanhong
Liu, Wenguang
author_sort He, Binbin
collection PubMed
description Corneal regeneration has always been a challenge due to its sophisticated structure and undesirable keratocyte-fibroblast transformation. Herein, we propose 3D printing of a biomimetic epithelium/stroma bilayer implant for corneal regeneration. Gelatin methacrylate (GelMA) and long-chain poly(ethylene glycol) diacrylate (PEGDA) are blended to form a two-component ink, which can be printed to different mechanically robust programmed PEGDA-GelMA objects by Digital Light Processing (DLP) printing technology, due to the toughening effect of crystalline crosslinks from long-chain PEGDA on GelMA hydrogel after photo-initiated copolymerization. The printed PEGDA-GelMA hydrogels support cell adhesion, proliferation, migration, meanwhile demonstrating a high light transmittance, and an appropriate swelling degree, nutrient permeation and degradation rate. A bi-layer dome-shaped corneal scaffold consisting of rabbit corneal epithelial cells (rCECs)-laden epithelia layer and rabbit adipose-derived mesenchymal stem cells (rASCs)-laden orthogonally aligned fibrous stroma layer can be printed out with a high fidelity and robustly surgical handling ability. This bi-layer cells-laden corneal scaffold is applied in a rabbit keratoplasty model. The post-operative outcome reveals efficient sealing of corneal defects, re-epithelialization and stromal regeneration. The concerted effects of microstructure of 3D printed corneal scaffold and precisely located cells in epithelia and stroma layer provide an optimal topographical and biological microenvironment for corneal regeneration.
format Online
Article
Text
id pubmed-8965162
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-89651622022-04-05 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration He, Binbin Wang, Jie Xie, Mengtian Xu, Miaoyi Zhang, Yahan Hao, Huijie Xing, Xiaoli Lu, William Han, Quanhong Liu, Wenguang Bioact Mater Article Corneal regeneration has always been a challenge due to its sophisticated structure and undesirable keratocyte-fibroblast transformation. Herein, we propose 3D printing of a biomimetic epithelium/stroma bilayer implant for corneal regeneration. Gelatin methacrylate (GelMA) and long-chain poly(ethylene glycol) diacrylate (PEGDA) are blended to form a two-component ink, which can be printed to different mechanically robust programmed PEGDA-GelMA objects by Digital Light Processing (DLP) printing technology, due to the toughening effect of crystalline crosslinks from long-chain PEGDA on GelMA hydrogel after photo-initiated copolymerization. The printed PEGDA-GelMA hydrogels support cell adhesion, proliferation, migration, meanwhile demonstrating a high light transmittance, and an appropriate swelling degree, nutrient permeation and degradation rate. A bi-layer dome-shaped corneal scaffold consisting of rabbit corneal epithelial cells (rCECs)-laden epithelia layer and rabbit adipose-derived mesenchymal stem cells (rASCs)-laden orthogonally aligned fibrous stroma layer can be printed out with a high fidelity and robustly surgical handling ability. This bi-layer cells-laden corneal scaffold is applied in a rabbit keratoplasty model. The post-operative outcome reveals efficient sealing of corneal defects, re-epithelialization and stromal regeneration. The concerted effects of microstructure of 3D printed corneal scaffold and precisely located cells in epithelia and stroma layer provide an optimal topographical and biological microenvironment for corneal regeneration. KeAi Publishing 2022-01-24 /pmc/articles/PMC8965162/ /pubmed/35386466 http://dx.doi.org/10.1016/j.bioactmat.2022.01.034 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
He, Binbin
Wang, Jie
Xie, Mengtian
Xu, Miaoyi
Zhang, Yahan
Hao, Huijie
Xing, Xiaoli
Lu, William
Han, Quanhong
Liu, Wenguang
3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
title 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
title_full 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
title_fullStr 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
title_full_unstemmed 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
title_short 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
title_sort 3d printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965162/
https://www.ncbi.nlm.nih.gov/pubmed/35386466
http://dx.doi.org/10.1016/j.bioactmat.2022.01.034
work_keys_str_mv AT hebinbin 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT wangjie 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT xiemengtian 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT xumiaoyi 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT zhangyahan 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT haohuijie 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT xingxiaoli 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT luwilliam 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT hanquanhong 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration
AT liuwenguang 3dprintedbiomimeticepitheliumstromabilayerhydrogelimplantforcornealregeneration