Cargando…
A Hybrid Deep Learning Method for Early and Late Mild Cognitive Impairment Diagnosis With Incomplete Multimodal Data
Multimodality neuroimages have been widely applied to diagnose mild cognitive impairment (MCI). However, the missing data problem is unavoidable. Most previously developed methods first train a generative adversarial network (GAN) to synthesize missing data and then train a classification network wi...
Autores principales: | Jin, Leiming, Zhao, Kun, Zhao, Yan, Che, Tongtong, Li, Shuyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965366/ https://www.ncbi.nlm.nih.gov/pubmed/35370588 http://dx.doi.org/10.3389/fninf.2022.843566 |
Ejemplares similares
-
Altered Whole-Brain Structural Covariance of the Hippocampal Subfields in Subcortical Vascular Mild Cognitive Impairment and Amnestic Mild Cognitive Impairment Patients
por: Wang, Xuetong, et al.
Publicado: (2018) -
Altered Functional Connectivity of the Basal Nucleus of Meynert in Subjective Cognitive Impairment, Early Mild Cognitive Impairment, and Late Mild Cognitive Impairment
por: Xu, Wenwen, et al.
Publicado: (2021) -
Regional Radiomics Similarity Networks Reveal Distinct Subtypes and Abnormality Patterns in Mild Cognitive Impairment
por: Zhao, Kun, et al.
Publicado: (2022) -
Multimodality neuroimaging in vascular mild cognitive impairment: A narrative review of current evidence
por: Liu, Qiuping, et al.
Publicado: (2023) -
Divergent Connectivity Changes in Gray Matter Structural Covariance Networks in Subjective Cognitive Decline, Amnestic Mild Cognitive Impairment, and Alzheimer’s Disease
por: Fu, Zhenrong, et al.
Publicado: (2021)