Cargando…
A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
ABSTRACT: In this article, we discuss the development of prognostic machine learning (ML) models for COVID-19 progression, by focusing on the task of predicting ICU admission within (any of) the next 5 days. On the basis of 6,625 complete blood count (CBC) tests from 1,004 patients, of which 18% wer...
Autores principales: | Famiglini, Lorenzo, Campagner, Andrea, Carobene, Anna, Cabitza, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965547/ https://www.ncbi.nlm.nih.gov/pubmed/35353302 http://dx.doi.org/10.1007/s11517-022-02543-x |
Ejemplares similares
-
External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count
por: Campagner, Andrea, et al.
Publicado: (2021) -
Application of Machine Learning to Improve Appropriateness of Treatment in an Orthopaedic Setting of Personalized Medicine
por: Milella, Frida, et al.
Publicado: (2022) -
Three-Way Decision for Handling Uncertainty in Machine Learning: A Narrative Review
por: Campagner, Andrea, et al.
Publicado: (2020) -
Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings
por: Seveso, Andrea, et al.
Publicado: (2020) -
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study
por: Brinati, Davide, et al.
Publicado: (2020)