Cargando…
Enhancing Wheat Disease Diagnosis in a Greenhouse Using Image Deep Features and Parallel Feature Fusion
Since the assessment of wheat diseases (e.g., leaf rust and tan spot) via visual observation is subjective and inefficient, this study focused on developing an automatic, objective, and efficient diagnosis approach. For each plant, color, and color-infrared (CIR) images were collected in a paired mo...
Autores principales: | Zhang, Zhao, Flores, Paulo, Friskop, Andrew, Liu, Zhaohui, Igathinathane, C., Han, X., Kim, H. J., Jahan, N., Mathew, J., Shreya, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965652/ https://www.ncbi.nlm.nih.gov/pubmed/35371139 http://dx.doi.org/10.3389/fpls.2022.834447 |
Ejemplares similares
-
Fusion of Deep Convolution and Shallow Features to Recognize the Severity of Wheat Fusarium Head Blight
por: Gu, Chunyan, et al.
Publicado: (2021) -
Automated Spike Detection in Diverse European Wheat Plants Using Textural Features and the Frangi Filter in 2D Greenhouse Images
por: Narisetti, Narendra, et al.
Publicado: (2020) -
Detection of wheat Fusarium head blight using UAV-based spectral and image feature fusion
por: Zhang, Hansu, et al.
Publicado: (2022) -
Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot)
por: Narisetti, Narendra, et al.
Publicado: (2022) -
Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning
por: Afonso, Manya, et al.
Publicado: (2020)