Cargando…
Machine-Aided Self-diagnostic Prediction Models for Polycystic Ovary Syndrome: Observational Study
BACKGROUND: Artificial intelligence and digital health care have substantially advanced to improve and enhance medical diagnosis and treatment during the prolonged period of the COVID-19 global pandemic. In this study, we discuss the development of prediction models for the self-diagnosis of polycys...
Autores principales: | Zigarelli, Angela, Jia, Ziyang, Lee, Hyunsun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965679/ https://www.ncbi.nlm.nih.gov/pubmed/35289757 http://dx.doi.org/10.2196/29967 |
Ejemplares similares
-
Diagnostic spectrum and 2-year outcome in a cohort of patients with very early arthritis
por: Norli, Ellen Sauar, et al.
Publicado: (2017) -
Diagnostic impact of routine Lyme serology in recent-onset arthritis: results from the ESPOIR cohort
por: Guellec, Dewi, et al.
Publicado: (2016) -
Elevated and diagnostic androgens of polycystic ovary syndrome
por: Abdelazim, Ibrahim A., et al.
Publicado: (2020) -
Implementation of a Cardiogenic Shock Team and Clinical Outcomes (INOVA-SHOCK Registry): Observational and Retrospective Study
por: Tehrani, Behnam, et al.
Publicado: (2018) -
Cardiac assessment of patients during post COVID-19 recovery phase: a prospective observational study
por: Sharma, Deepak, et al.
Publicado: (2022)