Cargando…

Self-motion with Hearing Impairment and (Directional) Hearing Aids

When listening to a sound source in everyday situations, typical movement behavior is highly individual and may not result in the listener directly facing the sound source. Behavioral differences can affect the performance of directional algorithms in hearing aids, as was shown in previous work by u...

Descripción completa

Detalles Bibliográficos
Autores principales: Hendrikse, Maartje M. E., Eichler, Theda, Hohmann, Volker, Grimm, Giso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966140/
https://www.ncbi.nlm.nih.gov/pubmed/35341403
http://dx.doi.org/10.1177/23312165221078707
Descripción
Sumario:When listening to a sound source in everyday situations, typical movement behavior is highly individual and may not result in the listener directly facing the sound source. Behavioral differences can affect the performance of directional algorithms in hearing aids, as was shown in previous work by using head movement trajectories of normal-hearing (NH) listeners in acoustic simulations for noise-suppression performance predictions. However, the movement behavior of hearing-impaired (HI) listeners with or without hearing aids may differ, and hearing-aid users might adapt their self-motion to improve the performance of directional algorithms. This work investigates the influence of hearing impairment on self-motion, and the interaction of hearing aids with self-motion. In order to do this, the self-motion of three HI participant groups­­­—aided with an adaptive differential microphone (ADM), aided without ADM, and unaided—was measured and compared to previously measured self-motion data from younger and older NH participants. Self-motion was measured in virtual audiovisual environments (VEs) in the laboratory, and the signal-to-noise ratios (SNRs) and SNR improvement of the ADM resulting from the head movements of the participants were estimated using acoustic simulations. HI participants did almost all of the movement with their head and less with their eyes compared to NH participants, which led to a 0.3 dB increase in estimated SNR and to differences in estimated SNR improvement of the ADM. However, the self-motion of the HI participants aided with ADM was similar to that of other HI participants, indicating that the ADM did not cause listeners to adapt their self-motion.