Cargando…

Modeling the diagnosis of coronary artery disease by discriminant analysis and logistic regression: a cross-sectional study

PURPOSE: Coronary artery disease (CAD) is one of the most significant cardiovascular diseases that requires accurate angiography to diagnose. Angiography is an invasive approach involving risks like death, heart attack, and stroke. An appropriate alternative for diagnosis of the disease is to use st...

Descripción completa

Detalles Bibliográficos
Autores principales: Shariatnia, Sahar, Ziaratban, Majid, Rajabi, Abdolhalim, Salehi, Aref, Abdi Zarrini, Kobra, Vakili, Mohammadali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966192/
https://www.ncbi.nlm.nih.gov/pubmed/35351098
http://dx.doi.org/10.1186/s12911-022-01823-8
Descripción
Sumario:PURPOSE: Coronary artery disease (CAD) is one of the most significant cardiovascular diseases that requires accurate angiography to diagnose. Angiography is an invasive approach involving risks like death, heart attack, and stroke. An appropriate alternative for diagnosis of the disease is to use statistical or data mining methods. The purpose of the study was to predict CAD by using discriminant analysis and compared with the logistic regression. MATERIALS AND METHODS: This cross-sectional study included 758 cases admitted to Fatemeh Zahra Teaching Hospital (Sari, Iran) for examination and coronary angiography for evaluation of CAD in 2019. A logistics discriminant, Quadratic Discriminant Analysis (QDA) and Linear Discriminant Analysis (LDA) model and K-Nearest Neighbor (KNN) were fitted for prognosis of CAD with the help of clinical and laboratory information of patients. RESULTS: Out of the 758 examined cases, 250 (32.98%) cases were non-CAD and 508 (67.22%) were diagnosed with CAD disease. The results indicated that the indices of accuracy, sensitivity, specificity and area under the ROC curve (AUC) in the linear discriminant analysis (LDA) were 78.6, 81.3, 71.3, and 81.9%, respectively. The results obtained by the quadratic discriminant analysis were respectively 64.6, 88.2, 47.9, and 81%. The values of the metrics in K-nearest neighbor method were 74, 77.5, 63.7, and 82%, respectively. Finally, the logistic regression reached 77, 87.6, 55.6, and 82%, respectively for the evaluation metrics. CONCLUSIONS: The LDA method is superior to the Quadratic Discriminant Analysis (QDA), K-Nearest Neighbor (KNN) and Logistic Regression (LR) methods in differentiating CAD patients. Therefore, in addition to common non-invasive diagnostic methods, LDA technique is recommended as a predictive model with acceptable accuracy, sensitivity, and specificity for the diagnosis of CAD. However, given that the differences between the models are small, it is recommended to use each model to predict CAD disease.