Cargando…
A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer’s disease
BACKGROUND: The three core pathologies of Alzheimer’s disease (AD) are amyloid pathology, tau pathology, and neurodegeneration. Biomarkers exist for each. Neurodegeneration is often detected by neuroimaging, and we hypothesized that a voxel-based deep learning approach using structural MRI might out...
Autores principales: | Feng, Xinyang, Provenzano, Frank A., Small, Scott A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966329/ https://www.ncbi.nlm.nih.gov/pubmed/35351193 http://dx.doi.org/10.1186/s13195-022-00985-x |
Ejemplares similares
-
Association of EEG, MRI, and regional blood flow biomarkers is predictive of prodromal Alzheimer’s disease
por: Moretti, Davide Vito
Publicado: (2015) -
Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains
por: Liu, Chen, et al.
Publicado: (2022) -
Temporal lobe epilepsy lateralization using retrospective cerebral blood volume MRI
por: Feng, Xinyang, et al.
Publicado: (2018) -
Deep learning methods may not outperform other machine learning methods on analyzing genomic studies
por: Dong, Yao, et al.
Publicado: (2022) -
Deep learning outperforms kidney organoid experts
por: Yu, Seyoung, et al.
Publicado: (2023)