Cargando…
Study on Identification Method of Pulmonary Nodules: Improved Random Walk Pulmonary Parenchyma Segmentation and Fusion Multi-Feature VGG16 Nodule Classification
PURPOSE: The purpose of this study was to realize automatic segmentation of lung parenchyma based on random walk algorithm to ensure the accuracy of lung parenchyma segmentation. The explicable features of pulmonary nodules were added into VGG16 neural network to improve the classification accuracy...
Autores principales: | Zhang, Yanrong, Meng, Lingyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966585/ https://www.ncbi.nlm.nih.gov/pubmed/35371983 http://dx.doi.org/10.3389/fonc.2022.822827 |
Ejemplares similares
-
VGG19 Network Assisted Joint Segmentation and Classification of Lung Nodules in CT Images
por: Khan, Muhammad Attique, et al.
Publicado: (2021) -
Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion
por: Tang, Tiequn, et al.
Publicado: (2022) -
Classification of Pulmonary Nodules by Using Hybrid Features
por: Tartar, Ahmet, et al.
Publicado: (2013) -
Pulmonary Nodule Detection Based on Multiscale Feature Fusion
por: Zhao, Yue, et al.
Publicado: (2022) -
Pulmonary nodule detection on lung parenchyma images using hyber-deep algorithm
por: Fang, Da, et al.
Publicado: (2023)