Cargando…
Model agnostic generation of counterfactual explanations for molecules
An outstanding challenge in deep learning in chemistry is its lack of interpretability. The inability of explaining why a neural network makes a prediction is a major barrier to deployment of AI models. This not only dissuades chemists from using deep learning predictions, but also has led to neural...
Autores principales: | Wellawatte, Geemi P., Seshadri, Aditi, White, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966631/ https://www.ncbi.nlm.nih.gov/pubmed/35432902 http://dx.doi.org/10.1039/d1sc05259d |
Ejemplares similares
-
A Perspective on
Explanations of Molecular Prediction
Models
por: Wellawatte, Geemi P., et al.
Publicado: (2023) -
From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks
por: Alfeo, Antonio Luca, et al.
Publicado: (2023) -
Correction: Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2021) -
Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2020) -
Assessment of chemistry knowledge in large language models that generate code
por: White, Andrew D., et al.
Publicado: (2023)