Cargando…
Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation
We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (M(pro)) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-μM for the final covalent compound (IC(50) = 830 ± 50 nM). The project extensively relied on high-resolution all-atom m...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966641/ https://www.ncbi.nlm.nih.gov/pubmed/35432906 http://dx.doi.org/10.1039/d1sc05892d |
_version_ | 1784678682813530112 |
---|---|
author | El Khoury, Léa Jing, Zhifeng Cuzzolin, Alberto Deplano, Alessandro Loco, Daniele Sattarov, Boris Hédin, Florent Wendeborn, Sebastian Ho, Chris El Ahdab, Dina Jaffrelot Inizan, Theo Sturlese, Mattia Sosic, Alice Volpiana, Martina Lugato, Angela Barone, Marco Gatto, Barbara Macchia, Maria Ludovica Bellanda, Massimo Battistutta, Roberto Salata, Cristiano Kondratov, Ivan Iminov, Rustam Khairulin, Andrii Mykhalonok, Yaroslav Pochepko, Anton Chashka-Ratushnyi, Volodymyr Kos, Iaroslava Moro, Stefano Montes, Matthieu Ren, Pengyu Ponder, Jay W. Lagardère, Louis Piquemal, Jean-Philip Sabbadin, Davide |
author_facet | El Khoury, Léa Jing, Zhifeng Cuzzolin, Alberto Deplano, Alessandro Loco, Daniele Sattarov, Boris Hédin, Florent Wendeborn, Sebastian Ho, Chris El Ahdab, Dina Jaffrelot Inizan, Theo Sturlese, Mattia Sosic, Alice Volpiana, Martina Lugato, Angela Barone, Marco Gatto, Barbara Macchia, Maria Ludovica Bellanda, Massimo Battistutta, Roberto Salata, Cristiano Kondratov, Ivan Iminov, Rustam Khairulin, Andrii Mykhalonok, Yaroslav Pochepko, Anton Chashka-Ratushnyi, Volodymyr Kos, Iaroslava Moro, Stefano Montes, Matthieu Ren, Pengyu Ponder, Jay W. Lagardère, Louis Piquemal, Jean-Philip Sabbadin, Davide |
author_sort | El Khoury, Léa |
collection | PubMed |
description | We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (M(pro)) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-μM for the final covalent compound (IC(50) = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand–protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of M(pro) inhibitors towards low nM affinities. |
format | Online Article Text |
id | pubmed-8966641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89666412022-04-14 Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation El Khoury, Léa Jing, Zhifeng Cuzzolin, Alberto Deplano, Alessandro Loco, Daniele Sattarov, Boris Hédin, Florent Wendeborn, Sebastian Ho, Chris El Ahdab, Dina Jaffrelot Inizan, Theo Sturlese, Mattia Sosic, Alice Volpiana, Martina Lugato, Angela Barone, Marco Gatto, Barbara Macchia, Maria Ludovica Bellanda, Massimo Battistutta, Roberto Salata, Cristiano Kondratov, Ivan Iminov, Rustam Khairulin, Andrii Mykhalonok, Yaroslav Pochepko, Anton Chashka-Ratushnyi, Volodymyr Kos, Iaroslava Moro, Stefano Montes, Matthieu Ren, Pengyu Ponder, Jay W. Lagardère, Louis Piquemal, Jean-Philip Sabbadin, Davide Chem Sci Chemistry We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (M(pro)) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-μM for the final covalent compound (IC(50) = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand–protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of M(pro) inhibitors towards low nM affinities. The Royal Society of Chemistry 2022-02-10 /pmc/articles/PMC8966641/ /pubmed/35432906 http://dx.doi.org/10.1039/d1sc05892d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry El Khoury, Léa Jing, Zhifeng Cuzzolin, Alberto Deplano, Alessandro Loco, Daniele Sattarov, Boris Hédin, Florent Wendeborn, Sebastian Ho, Chris El Ahdab, Dina Jaffrelot Inizan, Theo Sturlese, Mattia Sosic, Alice Volpiana, Martina Lugato, Angela Barone, Marco Gatto, Barbara Macchia, Maria Ludovica Bellanda, Massimo Battistutta, Roberto Salata, Cristiano Kondratov, Ivan Iminov, Rustam Khairulin, Andrii Mykhalonok, Yaroslav Pochepko, Anton Chashka-Ratushnyi, Volodymyr Kos, Iaroslava Moro, Stefano Montes, Matthieu Ren, Pengyu Ponder, Jay W. Lagardère, Louis Piquemal, Jean-Philip Sabbadin, Davide Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation |
title | Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation |
title_full | Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation |
title_fullStr | Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation |
title_full_unstemmed | Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation |
title_short | Computationally driven discovery of SARS-CoV-2 M(pro) inhibitors: from design to experimental validation |
title_sort | computationally driven discovery of sars-cov-2 m(pro) inhibitors: from design to experimental validation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966641/ https://www.ncbi.nlm.nih.gov/pubmed/35432906 http://dx.doi.org/10.1039/d1sc05892d |
work_keys_str_mv | AT elkhourylea computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT jingzhifeng computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT cuzzolinalberto computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT deplanoalessandro computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT locodaniele computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT sattarovboris computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT hedinflorent computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT wendebornsebastian computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT hochris computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT elahdabdina computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT jaffrelotinizantheo computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT sturlesemattia computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT sosicalice computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT volpianamartina computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT lugatoangela computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT baronemarco computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT gattobarbara computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT macchiamarialudovica computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT bellandamassimo computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT battistuttaroberto computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT salatacristiano computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT kondratovivan computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT iminovrustam computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT khairulinandrii computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT mykhalonokyaroslav computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT pochepkoanton computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT chashkaratushnyivolodymyr computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT kosiaroslava computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT morostefano computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT montesmatthieu computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT renpengyu computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT ponderjayw computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT lagarderelouis computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT piquemaljeanphilip computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation AT sabbadindavide computationallydrivendiscoveryofsarscov2mproinhibitorsfromdesigntoexperimentalvalidation |