Cargando…
Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae
Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeli...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967002/ https://www.ncbi.nlm.nih.gov/pubmed/35302986 http://dx.doi.org/10.1371/journal.pbio.3001585 |
_version_ | 1784678744476090368 |
---|---|
author | Bridges, Andrew A. Prentice, Jojo A. Fei, Chenyi Wingreen, Ned S. Bassler, Bonnie L. |
author_facet | Bridges, Andrew A. Prentice, Jojo A. Fei, Chenyi Wingreen, Ned S. Bassler, Bonnie L. |
author_sort | Bridges, Andrew A. |
collection | PubMed |
description | Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae. Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V. cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input–output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies. |
format | Online Article Text |
id | pubmed-8967002 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-89670022022-03-31 Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae Bridges, Andrew A. Prentice, Jojo A. Fei, Chenyi Wingreen, Ned S. Bassler, Bonnie L. PLoS Biol Research Article Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae. Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V. cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input–output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies. Public Library of Science 2022-03-18 /pmc/articles/PMC8967002/ /pubmed/35302986 http://dx.doi.org/10.1371/journal.pbio.3001585 Text en © 2022 Bridges et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bridges, Andrew A. Prentice, Jojo A. Fei, Chenyi Wingreen, Ned S. Bassler, Bonnie L. Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae |
title | Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae |
title_full | Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae |
title_fullStr | Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae |
title_full_unstemmed | Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae |
title_short | Quantitative input–output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae |
title_sort | quantitative input–output dynamics of a c-di-gmp signal transduction cascade in vibrio cholerae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967002/ https://www.ncbi.nlm.nih.gov/pubmed/35302986 http://dx.doi.org/10.1371/journal.pbio.3001585 |
work_keys_str_mv | AT bridgesandrewa quantitativeinputoutputdynamicsofacdigmpsignaltransductioncascadeinvibriocholerae AT prenticejojoa quantitativeinputoutputdynamicsofacdigmpsignaltransductioncascadeinvibriocholerae AT feichenyi quantitativeinputoutputdynamicsofacdigmpsignaltransductioncascadeinvibriocholerae AT wingreenneds quantitativeinputoutputdynamicsofacdigmpsignaltransductioncascadeinvibriocholerae AT basslerbonniel quantitativeinputoutputdynamicsofacdigmpsignaltransductioncascadeinvibriocholerae |