Cargando…
Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice
Methotrexate (MTX) has been used in treating various types of cancers but can also cause damage to normal organs and cell types. Folinic acid (FA) is a well-known MTX antidote that protects against toxicity caused by the drug and has been used for decades. Since hearing loss caused by MTX treatment...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967015/ https://www.ncbi.nlm.nih.gov/pubmed/35353852 http://dx.doi.org/10.1371/journal.pone.0266108 |
_version_ | 1784678747708850176 |
---|---|
author | Umugire, Alphonse Choi, Youngmi Lee, Sungsu Cho, Hyong-Ho |
author_facet | Umugire, Alphonse Choi, Youngmi Lee, Sungsu Cho, Hyong-Ho |
author_sort | Umugire, Alphonse |
collection | PubMed |
description | Methotrexate (MTX) has been used in treating various types of cancers but can also cause damage to normal organs and cell types. Folinic acid (FA) is a well-known MTX antidote that protects against toxicity caused by the drug and has been used for decades. Since hearing loss caused by MTX treatment is not well studied, herein we aimed to investigate the efficiency of the antioxidant Avenanthramide-C (AVN-C) on high-dose MTX (HDMTX) toxicity in the ear and provide insights into the possible mechanism involved in MTX-induced hearing loss in normal adult C57Bl/6 mice and HEI-OC1 cells. Our results show that the levels of MTX increased in the serum and perilymph 30 minutes after systemic administration. MTX increased hearing thresholds in mice, whereas AVN-C and FA preserved hearing within the normal range. MTX also caused a decrease in wave I amplitude, while AVN-C and FA maintained it at higher levels. MTX considerably damaged the cochlear synapses and neuronal integrity, and both AVN-C and FA rescued the synapses. MTX reduced the cell viability and increased the reactive oxygen species (ROS) level in HEI-OC1 cells, but AVN-C and FA reversed these changes. Apoptosis- and ROS-related genes were significantly upregulated in MTX-treated HEI-OC1 cells; however, they were downregulated by AVN-C and FA treatment. We show that MTX can cause severe hearing loss; it can cross the blood–labyrinth barrier and cause damage to the cochlear neurons and outer hair cells (OHCs). The antioxidant AVN-C exerts a strong protective effect against MTX-induced ototoxicity and preserved the inner ear structures (synapses, neurons, and OHCs) from MTX-induced damage. The mechanism of AVN-C against MTX suggests that ROS is involved in HDMTX-induced ototoxicity. |
format | Online Article Text |
id | pubmed-8967015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-89670152022-03-31 Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice Umugire, Alphonse Choi, Youngmi Lee, Sungsu Cho, Hyong-Ho PLoS One Research Article Methotrexate (MTX) has been used in treating various types of cancers but can also cause damage to normal organs and cell types. Folinic acid (FA) is a well-known MTX antidote that protects against toxicity caused by the drug and has been used for decades. Since hearing loss caused by MTX treatment is not well studied, herein we aimed to investigate the efficiency of the antioxidant Avenanthramide-C (AVN-C) on high-dose MTX (HDMTX) toxicity in the ear and provide insights into the possible mechanism involved in MTX-induced hearing loss in normal adult C57Bl/6 mice and HEI-OC1 cells. Our results show that the levels of MTX increased in the serum and perilymph 30 minutes after systemic administration. MTX increased hearing thresholds in mice, whereas AVN-C and FA preserved hearing within the normal range. MTX also caused a decrease in wave I amplitude, while AVN-C and FA maintained it at higher levels. MTX considerably damaged the cochlear synapses and neuronal integrity, and both AVN-C and FA rescued the synapses. MTX reduced the cell viability and increased the reactive oxygen species (ROS) level in HEI-OC1 cells, but AVN-C and FA reversed these changes. Apoptosis- and ROS-related genes were significantly upregulated in MTX-treated HEI-OC1 cells; however, they were downregulated by AVN-C and FA treatment. We show that MTX can cause severe hearing loss; it can cross the blood–labyrinth barrier and cause damage to the cochlear neurons and outer hair cells (OHCs). The antioxidant AVN-C exerts a strong protective effect against MTX-induced ototoxicity and preserved the inner ear structures (synapses, neurons, and OHCs) from MTX-induced damage. The mechanism of AVN-C against MTX suggests that ROS is involved in HDMTX-induced ototoxicity. Public Library of Science 2022-03-30 /pmc/articles/PMC8967015/ /pubmed/35353852 http://dx.doi.org/10.1371/journal.pone.0266108 Text en © 2022 Umugire et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Umugire, Alphonse Choi, Youngmi Lee, Sungsu Cho, Hyong-Ho Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice |
title | Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice |
title_full | Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice |
title_fullStr | Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice |
title_full_unstemmed | Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice |
title_short | Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice |
title_sort | efficiency of antioxidant avenanthramide-c on high-dose methotrexate-induced ototoxicity in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967015/ https://www.ncbi.nlm.nih.gov/pubmed/35353852 http://dx.doi.org/10.1371/journal.pone.0266108 |
work_keys_str_mv | AT umugirealphonse efficiencyofantioxidantavenanthramideconhighdosemethotrexateinducedototoxicityinmice AT choiyoungmi efficiencyofantioxidantavenanthramideconhighdosemethotrexateinducedototoxicityinmice AT leesungsu efficiencyofantioxidantavenanthramideconhighdosemethotrexateinducedototoxicityinmice AT chohyongho efficiencyofantioxidantavenanthramideconhighdosemethotrexateinducedototoxicityinmice |