Cargando…
Addressing Label Sparsity With Class-Level Common Sense for Google Maps
Successful knowledge graphs (KGs) solved the historical knowledge acquisition bottleneck by supplanting the previous expert focus with a simple, crowd-friendly one: KG nodes represent popular people, places, organizations, etc., and the graph arcs represent common sense relations like affiliations,...
Autores principales: | Welty, Chris, Aroyo, Lora, Korn, Flip, McCarthy, Sara M., Zhao, Shubin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967349/ https://www.ncbi.nlm.nih.gov/pubmed/35372829 http://dx.doi.org/10.3389/frai.2022.830299 |
Ejemplares similares
-
Random pruning: channel sparsity by expectation scaling factor
por: Sun, Chuanmeng, et al.
Publicado: (2023) -
Class incremental learning of remote sensing images based on class similarity distillation
por: Shen, Mingge, et al.
Publicado: (2023) -
Mapping cover crop species in southeastern Michigan using Sentinel-2 satellite data and Google Earth Engine
por: Wang, Xuewei, et al.
Publicado: (2023) -
Corrigendum: The Autonomous Mind: The Right to Freedom of Thought in the Twenty-First Century
por: McCarthy-Jones, Simon
Publicado: (2021) -
The Autonomous Mind: The Right to Freedom of Thought in the Twenty-First Century
por: McCarthy-Jones, Simon
Publicado: (2019)