Cargando…

Exploration of the Immuno-Inflammatory Potential Targets of Xinfeng Capsule in Patients with Ankylosing Spondylitis Based on Data Mining, Network Pharmacology, and Molecular Docking

OBJECTIVE: This study aimed to ascertain the immuno-inflammatory molecular targets of Xinfeng capsules (XFC) in the treatment of ankylosing spondylitis (AS) based on data mining, network pharmacology, and molecular docking. METHODS: The efficacy of XFC in the treatment of AS was assessed by clinical...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Yanyan, Liu, Jian, Xin, Ling, Wen, Jianting, Guo, Jinchen, Huang, Dan, Li, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967514/
https://www.ncbi.nlm.nih.gov/pubmed/35368759
http://dx.doi.org/10.1155/2022/5382607
Descripción
Sumario:OBJECTIVE: This study aimed to ascertain the immuno-inflammatory molecular targets of Xinfeng capsules (XFC) in the treatment of ankylosing spondylitis (AS) based on data mining, network pharmacology, and molecular docking. METHODS: The efficacy of XFC in the treatment of AS was assessed by clinical data mining. Network pharmacology was utilized to establish a network of the targets for XFC active ingredients in the treatment of AS. The binding mode and affinity of XFC active ingredients to the key targets for AS were predicted using molecular docking. RESULTS: XFC significantly diminished immuno-inflammatory indicators of AS. In total, 208 targets of XFC were obtained from the TCMSP database and 629 disease targets of AS were screened from the GeneCards database, which were intersected to yield 57 targets of XFC in the treatment of AS. Protein-protein interaction, gene ontology, and Kyoto genome encyclopedia analyses showed that XFC might activate TNF and NF-κB signaling pathways. Quercetin, kaempferol, triptolide, and formononetin had free binding energies < -9 kcal/mol to inflammatory targets (TNF and PTGS2) in the molecular docking analysis of XFC-active ingredients, indicating that TNF and PTGS2 might be the targets of the action of XFC. CONCLUSIONS: Collectively, XFC had a significant therapeutic effect on AS. Specifically, the active ingredients of XFC, including quercetin, kaempferol, triptolide, and formononetin, inhibited the inflammatory response in AS by downregulating TNF and PTGS2 in the TNF and NF-κB signaling pathways.