Cargando…
Machine learning and phone data can improve targeting of humanitarian aid
The COVID-19 pandemic has devastated many low- and middle-income countries, causing widespread food insecurity and a sharp decline in living standards(1). In response to this crisis, governments and humanitarian organizations worldwide have distributed social assistance to more than 1.5 billion peop...
Autores principales: | Aiken, Emily, Bellue, Suzanne, Karlan, Dean, Udry, Chris, Blumenstock, Joshua E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967719/ https://www.ncbi.nlm.nih.gov/pubmed/35296856 http://dx.doi.org/10.1038/s41586-022-04484-9 |
Ejemplares similares
-
Decolonising humanitarianism or humanitarian aid?
por: Aloudat, Tammam, et al.
Publicado: (2022) -
Humanitarian Aid Workers
por: Lachish, Tamar, et al.
Publicado: (2019) -
Mobile phone data reveal the effects of violence on internal displacement in Afghanistan
por: Tai, Xiao Hui, et al.
Publicado: (2022) -
Foreign Aid and Humanitarian Assistance
por: Gardner, Anthony Luzzatto
Publicado: (2019) -
Do No Harm in refugee humanitarian aid: the case of the Rohingya humanitarian response
por: Khaled, Abu Faisal Md.
Publicado: (2021)