Cargando…
Engineering nonlinear epileptic biomarkers using deep learning and Benford’s law
In this study, we designed two deep neural networks to encode 16 features for early seizure detection in intracranial EEG and compared them and their frequency responses to 16 widely used engineered metrics to interpret their properties: epileptogenicity index (EI), phase locked high gamma (PLHG), t...
Autores principales: | Caffarini, Joseph, Gjini, Klevest, Sevak, Brinda, Waleffe, Roger, Kalkach-Aparicio, Mariel, Boly, Melanie, Struck, Aaron F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967852/ https://www.ncbi.nlm.nih.gov/pubmed/35354911 http://dx.doi.org/10.1038/s41598-022-09429-w |
Ejemplares similares
-
Quantitative spatio-temporal characterization of epileptic spikes using high density EEG: Differences between NREM sleep and REM sleep
por: Kang, Xuan, et al.
Publicado: (2020) -
Benford's law: theory and applications
por: Miller, Steven J
Publicado: (2015) -
Benford’s Law and COVID-19 reporting()
por: Koch, Christoffer, et al.
Publicado: (2020) -
Benford’s Law: Textbook Exercises and Multiple-Choice Testbanks
por: Slepkov, Aaron D., et al.
Publicado: (2015) -
Benford’s Law Applies to Online Social Networks
por: Golbeck, Jennifer
Publicado: (2015)