Cargando…
A Zero-Padding Frequency Domain Convolutional Neural Network for SSVEP Classification
The brain-computer interface (BCI) of steady-state visual evoked potential (SSVEP) is one of the fundamental ways of human-computer communication. The main challenge is that there may be a nonlinear relationship between different SSVEP in other states. For improving the performance of SSVEP BCI, a n...
Autores principales: | Gao, Dongrui, Zheng, Wenyin, Wang, Manqing, Wang, Lutao, Xiao, Yi, Zhang, Yongqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967947/ https://www.ncbi.nlm.nih.gov/pubmed/35370578 http://dx.doi.org/10.3389/fnhum.2022.815163 |
Ejemplares similares
-
EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks
por: Gao, Dongrui, et al.
Publicado: (2023) -
Information Bottleneck as Optimisation Method for SSVEP-Based BCI
por: Ingel, Anti, et al.
Publicado: (2021) -
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)
por: Zhao, Xing, et al.
Publicado: (2017) -
GDNet-EEG: An attention-aware deep neural network based on group depth-wise convolution for SSVEP stimulation frequency recognition
por: Wan, Zhijiang, et al.
Publicado: (2023) -
An online hybrid BCI combining SSVEP and EOG-based eye movements
por: Zhang, Jun, et al.
Publicado: (2023)