Cargando…
Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction
Membrane receptors provide interfaces of various extracellular stimuli to transduce the signal into the cell. Receptors are required to possess such conflicting properties as high sensitivity and noise reduction for the cell to keep its homeostasis and appropriate responses. To understand the mechan...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society of Japan
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968032/ https://www.ncbi.nlm.nih.gov/pubmed/35435651 http://dx.doi.org/10.2142/biophysico.bppb-v19.0007 |
_version_ | 1784678959420538880 |
---|---|
author | Yoshimura, Hideaki |
author_facet | Yoshimura, Hideaki |
author_sort | Yoshimura, Hideaki |
collection | PubMed |
description | Membrane receptors provide interfaces of various extracellular stimuli to transduce the signal into the cell. Receptors are required to possess such conflicting properties as high sensitivity and noise reduction for the cell to keep its homeostasis and appropriate responses. To understand the mechanisms by which these functions are achieved, single-molecule monitoring of the motilities of receptors and signaling molecules on the plasma membrane is one of the most direct approaches. This review article introduces several recent single-molecule imaging studies of receptors, including the author’s recent work on triple-color single-molecule imaging of G protein-coupled receptors. Based on these researches, advantages and perspectives of the single-molecule imaging approach to solving the mechanisms of receptor functions are illustrated. |
format | Online Article Text |
id | pubmed-8968032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Biophysical Society of Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-89680322022-04-15 Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction Yoshimura, Hideaki Biophys Physicobiol Review Article (Invited) Membrane receptors provide interfaces of various extracellular stimuli to transduce the signal into the cell. Receptors are required to possess such conflicting properties as high sensitivity and noise reduction for the cell to keep its homeostasis and appropriate responses. To understand the mechanisms by which these functions are achieved, single-molecule monitoring of the motilities of receptors and signaling molecules on the plasma membrane is one of the most direct approaches. This review article introduces several recent single-molecule imaging studies of receptors, including the author’s recent work on triple-color single-molecule imaging of G protein-coupled receptors. Based on these researches, advantages and perspectives of the single-molecule imaging approach to solving the mechanisms of receptor functions are illustrated. The Biophysical Society of Japan 2022-03-11 /pmc/articles/PMC8968032/ /pubmed/35435651 http://dx.doi.org/10.2142/biophysico.bppb-v19.0007 Text en 2022 THE BIOPHYSICAL SOCIETY OF JAPAN https://creativecommons.org/licenses/by-nc-sa/4.0/This article is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/. |
spellingShingle | Review Article (Invited) Yoshimura, Hideaki Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
title | Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
title_full | Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
title_fullStr | Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
title_full_unstemmed | Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
title_short | Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
title_sort | triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction |
topic | Review Article (Invited) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968032/ https://www.ncbi.nlm.nih.gov/pubmed/35435651 http://dx.doi.org/10.2142/biophysico.bppb-v19.0007 |
work_keys_str_mv | AT yoshimurahideaki triplecolorsinglemoleculeimagingforanalysisoftheroleofreceptoroligomersinsignaltransduction |