Cargando…

Insights into glyphosate removal efficiency using a new 2D nanomaterial

Glyphosate (GLY) is a nonselective herbicide that has been widely used in agriculture for weed control. However, there are potential genetic, development and reproduction risks to humans and animals associated with exposure to GLY. Therefore, the removal of this type of environmental pollutants has...

Descripción completa

Detalles Bibliográficos
Autores principales: Razavi, Leila, Raissi, Heidar, Farzad, Farzaneh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968191/
https://www.ncbi.nlm.nih.gov/pubmed/35424903
http://dx.doi.org/10.1039/d2ra00385f
_version_ 1784678996764524544
author Razavi, Leila
Raissi, Heidar
Farzad, Farzaneh
author_facet Razavi, Leila
Raissi, Heidar
Farzad, Farzaneh
author_sort Razavi, Leila
collection PubMed
description Glyphosate (GLY) is a nonselective herbicide that has been widely used in agriculture for weed control. However, there are potential genetic, development and reproduction risks to humans and animals associated with exposure to GLY. Therefore, the removal of this type of environmental pollutants has become a significant challenge. Some of the two-dimensional nanomaterials, due to the characteristics of hydrophilic nature, abundant highly active surficial sites and, large specific surface area are showed high removal efficiency for a wide range of pollutants. The present study focused on the adsorption behavior of GLY on silicene nanosheets (SNS). In order to provide more detailed information about the adsorption mechanism of contaminants on the adsorbent's surface, molecular dynamics (MD) and well-tempered metadynamics simulations are performed. The MD results are demonstrated that the contribution of the L-J term in pollutant/adsorbent interactions is more than coulombic energy. Furthermore, the simulation results demonstrated the lowest total energy value for system-A (with the lowest pollutant concentration), while system-D (contains the highest concentration of GLY) had the most total energy (E(tot): −78.96 vs. −448.51 kJ mol(−1)). The well-tempered metadynamics simulation is accomplished to find the free energy surface of the investigated systems. The free energy calculation for the SNS/GLY system indicates a stable point in which the distance of GLY from the SNS surface is 1.165 nm.
format Online
Article
Text
id pubmed-8968191
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-89681912022-04-13 Insights into glyphosate removal efficiency using a new 2D nanomaterial Razavi, Leila Raissi, Heidar Farzad, Farzaneh RSC Adv Chemistry Glyphosate (GLY) is a nonselective herbicide that has been widely used in agriculture for weed control. However, there are potential genetic, development and reproduction risks to humans and animals associated with exposure to GLY. Therefore, the removal of this type of environmental pollutants has become a significant challenge. Some of the two-dimensional nanomaterials, due to the characteristics of hydrophilic nature, abundant highly active surficial sites and, large specific surface area are showed high removal efficiency for a wide range of pollutants. The present study focused on the adsorption behavior of GLY on silicene nanosheets (SNS). In order to provide more detailed information about the adsorption mechanism of contaminants on the adsorbent's surface, molecular dynamics (MD) and well-tempered metadynamics simulations are performed. The MD results are demonstrated that the contribution of the L-J term in pollutant/adsorbent interactions is more than coulombic energy. Furthermore, the simulation results demonstrated the lowest total energy value for system-A (with the lowest pollutant concentration), while system-D (contains the highest concentration of GLY) had the most total energy (E(tot): −78.96 vs. −448.51 kJ mol(−1)). The well-tempered metadynamics simulation is accomplished to find the free energy surface of the investigated systems. The free energy calculation for the SNS/GLY system indicates a stable point in which the distance of GLY from the SNS surface is 1.165 nm. The Royal Society of Chemistry 2022-03-31 /pmc/articles/PMC8968191/ /pubmed/35424903 http://dx.doi.org/10.1039/d2ra00385f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Razavi, Leila
Raissi, Heidar
Farzad, Farzaneh
Insights into glyphosate removal efficiency using a new 2D nanomaterial
title Insights into glyphosate removal efficiency using a new 2D nanomaterial
title_full Insights into glyphosate removal efficiency using a new 2D nanomaterial
title_fullStr Insights into glyphosate removal efficiency using a new 2D nanomaterial
title_full_unstemmed Insights into glyphosate removal efficiency using a new 2D nanomaterial
title_short Insights into glyphosate removal efficiency using a new 2D nanomaterial
title_sort insights into glyphosate removal efficiency using a new 2d nanomaterial
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968191/
https://www.ncbi.nlm.nih.gov/pubmed/35424903
http://dx.doi.org/10.1039/d2ra00385f
work_keys_str_mv AT razavileila insightsintoglyphosateremovalefficiencyusinganew2dnanomaterial
AT raissiheidar insightsintoglyphosateremovalefficiencyusinganew2dnanomaterial
AT farzadfarzaneh insightsintoglyphosateremovalefficiencyusinganew2dnanomaterial