Cargando…
A Structure-Related Fine-Grained Deep Learning System With Diversity Data for Universal Glaucoma Visual Field Grading
PURPOSE: Glaucoma is the main cause of irreversible blindness worldwide. However, the diagnosis and treatment of glaucoma remain difficult because of the lack of an effective glaucoma grading measure. In this study, we aimed to propose an artificial intelligence system to provide adequate assessment...
Autores principales: | Huang, Xiaoling, Jin, Kai, Zhu, Jiazhu, Xue, Ying, Si, Ke, Zhang, Chun, Meng, Sukun, Gong, Wei, Ye, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968343/ https://www.ncbi.nlm.nih.gov/pubmed/35372429 http://dx.doi.org/10.3389/fmed.2022.832920 |
Ejemplares similares
-
Correction to: Automatic differentiation of Glaucoma visual field from non-glaucoma visual field using deep convolutional neural network
por: Li, Fei, et al.
Publicado: (2019) -
Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
por: Li, Fei, et al.
Publicado: (2018) -
Fine-grained attention & knowledge-based collaborative network for diabetic retinopathy grading
por: Tian, Miao, et al.
Publicado: (2023) -
A deep learning approach to automatic detection of early glaucoma from visual fields
por: Kucur, Şerife Seda, et al.
Publicado: (2018) -
Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning
por: Montesano, Giovanni, et al.
Publicado: (2023)