Cargando…
Lung Disease Classification in CXR Images Using Hybrid Inception-ResNet-v2 Model and Edge Computing
Chest X-ray (CXR) imaging is one of the most widely used and economical tests to diagnose a wide range of diseases. However, even for expert radiologists, it is a challenge to accurately diagnose diseases from CXR samples. Furthermore, there remains an acute shortage of trained radiologists worldwid...
Autores principales: | Sharma, Chandra Mani, Goyal, Lakshay, Chariar, Vijayaraghavan M., Sharma, Navel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968389/ https://www.ncbi.nlm.nih.gov/pubmed/35368941 http://dx.doi.org/10.1155/2022/9036457 |
Ejemplares similares
-
Retracted: Lung Disease Classification in CXR Images Using Hybrid Inception-ResNet-v2 Model and Edge Computing
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Classification of lungs infected COVID-19 images based on inception-ResNet
por: Chen, Yunfeng, et al.
Publicado: (2022) -
Severity Grading and Early Retinopathy Lesion Detection through Hybrid Inception-ResNet Architecture
por: Yasin, Sana, et al.
Publicado: (2021) -
Maize seed appearance quality assessment based on improved Inception-ResNet
por: Song, Chang, et al.
Publicado: (2023) -
Recurrence Plot-Based Approach for Cardiac Arrhythmia Classification Using Inception-ResNet-v2
por: Zhang, Hua, et al.
Publicado: (2021)