Cargando…
Machine learning algorithm using publicly available echo database for simplified “visual estimation” of left ventricular ejection fraction
BACKGROUND: Left ventricular ejection fraction calculation automation typically requires complex algorithms and is dependent of optimal visualization and tracing of endocardial borders. This significantly limits usability in bedside clinical applications, where ultrasound automation is needed most....
Autores principales: | Blaivas, Michael, Blaivas, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968469/ https://www.ncbi.nlm.nih.gov/pubmed/35433318 http://dx.doi.org/10.5493/wjem.v12.i2.16 |
Ejemplares similares
-
Artificial intelligence versus expert: a comparison of rapid visual inferior vena cava collapsibility assessment between POCUS experts and a deep learning algorithm
por: Blaivas, Michael, et al.
Publicado: (2020) -
Estimation of Left Ventricular Ejection Fraction Using Cardiovascular Hemodynamic Parameters and Pulse Morphological Characteristics with Machine Learning Algorithms
por: Liu, Shing-Hong, et al.
Publicado: (2022) -
Visual versus fully automated assessment of left ventricular ejection fraction
por: Abazid, Rami Mahmood, et al.
Publicado: (2018) -
Circulating troponin and further left ventricular ejection fraction improvement in patients with previously recovered left ventricular ejection fraction
por: Howlett, Jonathan G., et al.
Publicado: (2020) -
Prognostic impacts of changes in left ventricular ejection fraction in heart failure patients with preserved left ventricular ejection fraction
por: Yoshihisa, Akiomi, et al.
Publicado: (2020)