Cargando…

Semantic segmentation of multispectral photoacoustic images using deep learning

Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquir...

Descripción completa

Detalles Bibliográficos
Autores principales: Schellenberg, Melanie, Dreher, Kris K., Holzwarth, Niklas, Isensee, Fabian, Reinke, Annika, Schreck, Nicholas, Seitel, Alexander, Tizabi, Minu D., Maier-Hein, Lena, Gröhl, Janek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968659/
https://www.ncbi.nlm.nih.gov/pubmed/35371919
http://dx.doi.org/10.1016/j.pacs.2022.100341
_version_ 1784679093709570048
author Schellenberg, Melanie
Dreher, Kris K.
Holzwarth, Niklas
Isensee, Fabian
Reinke, Annika
Schreck, Nicholas
Seitel, Alexander
Tizabi, Minu D.
Maier-Hein, Lena
Gröhl, Janek
author_facet Schellenberg, Melanie
Dreher, Kris K.
Holzwarth, Niklas
Isensee, Fabian
Reinke, Annika
Schreck, Nicholas
Seitel, Alexander
Tizabi, Minu D.
Maier-Hein, Lena
Gröhl, Janek
author_sort Schellenberg, Melanie
collection PubMed
description Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging.
format Online
Article
Text
id pubmed-8968659
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-89686592022-04-01 Semantic segmentation of multispectral photoacoustic images using deep learning Schellenberg, Melanie Dreher, Kris K. Holzwarth, Niklas Isensee, Fabian Reinke, Annika Schreck, Nicholas Seitel, Alexander Tizabi, Minu D. Maier-Hein, Lena Gröhl, Janek Photoacoustics Research Article Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging. Elsevier 2022-03-05 /pmc/articles/PMC8968659/ /pubmed/35371919 http://dx.doi.org/10.1016/j.pacs.2022.100341 Text en © 2022 The Authors. Published by Elsevier GmbH. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Schellenberg, Melanie
Dreher, Kris K.
Holzwarth, Niklas
Isensee, Fabian
Reinke, Annika
Schreck, Nicholas
Seitel, Alexander
Tizabi, Minu D.
Maier-Hein, Lena
Gröhl, Janek
Semantic segmentation of multispectral photoacoustic images using deep learning
title Semantic segmentation of multispectral photoacoustic images using deep learning
title_full Semantic segmentation of multispectral photoacoustic images using deep learning
title_fullStr Semantic segmentation of multispectral photoacoustic images using deep learning
title_full_unstemmed Semantic segmentation of multispectral photoacoustic images using deep learning
title_short Semantic segmentation of multispectral photoacoustic images using deep learning
title_sort semantic segmentation of multispectral photoacoustic images using deep learning
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968659/
https://www.ncbi.nlm.nih.gov/pubmed/35371919
http://dx.doi.org/10.1016/j.pacs.2022.100341
work_keys_str_mv AT schellenbergmelanie semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT dreherkrisk semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT holzwarthniklas semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT isenseefabian semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT reinkeannika semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT schrecknicholas semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT seitelalexander semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT tizabiminud semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT maierheinlena semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning
AT grohljanek semanticsegmentationofmultispectralphotoacousticimagesusingdeeplearning