Cargando…
Verteporfin is a substrate-selective γ-secretase inhibitor that binds the amyloid precursor protein transmembrane domain
This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968665/ https://www.ncbi.nlm.nih.gov/pubmed/35247387 http://dx.doi.org/10.1016/j.jbc.2022.101792 |
Sumario: | This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, including both the C99 domain of the human amyloid precursor protein and the Notch receptor. Substrate-specific inhibition of C99 cleavage is desirable to reduce production of the amyloid-β polypeptide without inhibiting Notch cleavage, a major source of toxicity associated with broad specificity γ-secretase inhibitors. In order to identify a C99-selective inhibitors of the human γ-secretase, we conducted an NMR-based screen of FDA-approved drugs against C99 in model membranes. From this screen, we identified the small-molecule verteporfin with these properties. We observed that verteporfin formed a direct 1:1 complex with C99, with a K(D) of 15–47 μM (depending on the membrane mimetic used), and that it did not bind the transmembrane domain of the Notch-1 receptor. Biochemical assays showed that direct binding of verteporfin to C99 inhibits γ-secretase cleavage of C99 with IC(50) values in the range of 15–164 μM, while Notch-1 cleavage was inhibited only at higher concentrations, and likely via a mechanism that does not involve binding to Notch-1. This work documents a robust NMR-based approach to discovery of small-molecule binders to single-span membrane proteins and confirmed that it is possible to inhibit γ-secretase in a substrate-specific manner. |
---|