Cargando…
A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports
The Beijing 2022 Winter Olympics will begin soon, which is mainly focused on winter sports. Athletes from different countries will arrive in Beijing one after another for training and competition. The health protection of athletes of winter sports is very important in training and competition. The o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968734/ https://www.ncbi.nlm.nih.gov/pubmed/35372194 http://dx.doi.org/10.3389/fpubh.2022.842452 |
_version_ | 1784679108511268864 |
---|---|
author | Liu, Peihua Yue, Nan Chen, Jiandong |
author_facet | Liu, Peihua Yue, Nan Chen, Jiandong |
author_sort | Liu, Peihua |
collection | PubMed |
description | The Beijing 2022 Winter Olympics will begin soon, which is mainly focused on winter sports. Athletes from different countries will arrive in Beijing one after another for training and competition. The health protection of athletes of winter sports is very important in training and competition. The occurrence of sports injury is characterized by multiple factors, uncertainty, and accidents. This paper mainly pays attention to the head injury with the highest severity. Athletes' high safety awareness is a part of reducing injury, but safety awareness cannot effectively reduce the occurrence of injury in competition, and timely treatment of injured athletes is particularly important. After athletes are injured, a telemedicine image acquisition system can be built, so that medical experts can identify athletes' injuries in time and provide the basis for further diagnosis and treatment. In order to improve the accuracy of medical image processing, a C-support vector machine (SVM) medical image segmentation method combining the Chan-Vese (CV) model and SVM is proposed in this paper. After segmentation, the edge and detail features of the image are more prominent, which meet the requirements of high precision for medical image segmentation. Meanwhile, a high-precision registration algorithm of brain functional time-series images based on machine learning (ML) is proposed, and the automatic optimization of high-precision registration of brain function time-series images is performed by ML algorithm. The experimental results show that the proposed algorithm has higher segmentation accuracy above 80% and less registration time below 40 ms, which can provide a reference for doctors to quickly identify the injury and shorten the time. |
format | Online Article Text |
id | pubmed-8968734 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89687342022-04-01 A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports Liu, Peihua Yue, Nan Chen, Jiandong Front Public Health Public Health The Beijing 2022 Winter Olympics will begin soon, which is mainly focused on winter sports. Athletes from different countries will arrive in Beijing one after another for training and competition. The health protection of athletes of winter sports is very important in training and competition. The occurrence of sports injury is characterized by multiple factors, uncertainty, and accidents. This paper mainly pays attention to the head injury with the highest severity. Athletes' high safety awareness is a part of reducing injury, but safety awareness cannot effectively reduce the occurrence of injury in competition, and timely treatment of injured athletes is particularly important. After athletes are injured, a telemedicine image acquisition system can be built, so that medical experts can identify athletes' injuries in time and provide the basis for further diagnosis and treatment. In order to improve the accuracy of medical image processing, a C-support vector machine (SVM) medical image segmentation method combining the Chan-Vese (CV) model and SVM is proposed in this paper. After segmentation, the edge and detail features of the image are more prominent, which meet the requirements of high precision for medical image segmentation. Meanwhile, a high-precision registration algorithm of brain functional time-series images based on machine learning (ML) is proposed, and the automatic optimization of high-precision registration of brain function time-series images is performed by ML algorithm. The experimental results show that the proposed algorithm has higher segmentation accuracy above 80% and less registration time below 40 ms, which can provide a reference for doctors to quickly identify the injury and shorten the time. Frontiers Media S.A. 2022-03-17 /pmc/articles/PMC8968734/ /pubmed/35372194 http://dx.doi.org/10.3389/fpubh.2022.842452 Text en Copyright © 2022 Liu, Yue and Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Public Health Liu, Peihua Yue, Nan Chen, Jiandong A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports |
title | A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports |
title_full | A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports |
title_fullStr | A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports |
title_full_unstemmed | A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports |
title_short | A Machine-Learning-Based Medical Imaging Fast Recognition of Injury Mechanism for Athletes of Winter Sports |
title_sort | machine-learning-based medical imaging fast recognition of injury mechanism for athletes of winter sports |
topic | Public Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968734/ https://www.ncbi.nlm.nih.gov/pubmed/35372194 http://dx.doi.org/10.3389/fpubh.2022.842452 |
work_keys_str_mv | AT liupeihua amachinelearningbasedmedicalimagingfastrecognitionofinjurymechanismforathletesofwintersports AT yuenan amachinelearningbasedmedicalimagingfastrecognitionofinjurymechanismforathletesofwintersports AT chenjiandong amachinelearningbasedmedicalimagingfastrecognitionofinjurymechanismforathletesofwintersports AT liupeihua machinelearningbasedmedicalimagingfastrecognitionofinjurymechanismforathletesofwintersports AT yuenan machinelearningbasedmedicalimagingfastrecognitionofinjurymechanismforathletesofwintersports AT chenjiandong machinelearningbasedmedicalimagingfastrecognitionofinjurymechanismforathletesofwintersports |