Cargando…
Retinal Vessel Extraction via Assisted Multi-Channel Feature Map and U-Net
Early detection of vessels from fundus images can effectively prevent the permanent retinal damages caused by retinopathies such as glaucoma, hyperextension, and diabetes. Concerning the red color of both retinal vessels and background and the vessel's morphological variations, the current vess...
Autores principales: | Bhatia, Surbhi, Alam, Shadab, Shuaib, Mohammed, Hameed Alhameed, Mohammed, Jeribi, Fathe, Alsuwailem, Razan Ibrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968759/ https://www.ncbi.nlm.nih.gov/pubmed/35372222 http://dx.doi.org/10.3389/fpubh.2022.858327 |
Ejemplares similares
-
Convolutional Neural Network Based Real Time Arabic Speech Recognition to Arabic Braille for Hearing and Visually Impaired
por: Bhatia, Surbhi, et al.
Publicado: (2022) -
Load Balancing Using Artificial Intelligence for Cloud-Enabled Internet of Everything in Healthcare Domain
por: Aqeel, Ibrahim, et al.
Publicado: (2023) -
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
por: Liu, Congjun, et al.
Publicado: (2022) -
An improved U-net based retinal vessel image segmentation method
por: Ren, Kan, et al.
Publicado: (2022) -
Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation
por: Wang, Chang, et al.
Publicado: (2019)