Cargando…
LAMP-5 is an essential inflammatory-signaling regulator and novel immunotherapy target for mixed lineage leukemia-rearranged acute leukemia
Although great advances have been made in understanding the pathobiology of mixed lineage leukemia-rearranged (MLL-r) leukemias, therapies for this leukemia have remained limited, and clinical outcomes remain bleak. In order to identify novel targets for immunotherapy treatments, we compiled a linea...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Fondazione Ferrata Storti
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968879/ https://www.ncbi.nlm.nih.gov/pubmed/33910331 http://dx.doi.org/10.3324/haematol.2020.257451 |
Sumario: | Although great advances have been made in understanding the pathobiology of mixed lineage leukemia-rearranged (MLL-r) leukemias, therapies for this leukemia have remained limited, and clinical outcomes remain bleak. In order to identify novel targets for immunotherapy treatments, we compiled a lineage-independent MLL-r leukemia gene signature using publicly available data sets. Data from large leukemia repositories were filtered through the in silico human surfaceome, providing a list of highly predicted cell surface proteins overexpressed in MLL-r leukemias. LAMP5, a lysosomal associated membrane protein, is expressed highly and specifically in MLL-r leukemia. We found that LAMP5 is a direct target of the oncogenic MLL-fusion protein. LAMP5 depletion significantly inhibited leukemia cell growth in vitro and in vivo. Functional studies showed that LAMP-5 is a novel modulator of innate-immune pathways in MLL-r leukemias. Downregulation of LAMP5 led to inhibition of NF-kB signaling and increased activation of type-1 interferon signaling downstream of Toll-like receptor/interleukin 1 receptor activation. These effects were attributable to the critical role of LAMP-5 in transferring the signal flux from interferon signaling endosomes to pro-inflammatory signaling endosomes. Depletion of IRF7 was able to partially rescue the cell growth inhibition upon LAMP5 downregulation. Lastly, LAMP-5 was readily detected on the surface of MLL-r leukemia cells. Targeting surface LAMP-5 using an antibody-drug conjugate leads to significant cell viability decrease specifically in MLL-r leukemias. Overall, based on the limited expression throughout human tissues, we postulate that LAMP-5 could potentially serve as an immunotherapeutic target with a wide therapeutic window to treat MLL-r leukemias. |
---|