Cargando…

IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load

Currently, no molecular biomarker indices are used in standard care to make treatment decisions at diagnosis of chronic lymphocytic leukemia (CLL). We used Infinium MethylationEPIC array data from diagnostic blood samples of 114 CLL patients and developed a procedure to stratify patients based on me...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussmann, Dianna, Starnawska, Anna, Kristensen, Louise, Daugaard, Iben, Thomsen, Astrid, Kjeldsen, Tina E., Hansen, Christine Søholm, Bybjerg-Grauholm, Jonas, Johansen, Karina Dalsgaard, Ludvigsen, Maja, Kristensen, Thomas, Larsen, Thomas Stauffer, Møller, Michael Boe, Nyvold, Charlotte Guldborg, Hansen, Lise Lotte, Wojdacz, Tomasz K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Fondazione Ferrata Storti 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968906/
https://www.ncbi.nlm.nih.gov/pubmed/34092057
http://dx.doi.org/10.3324/haematol.2021.278477
_version_ 1784679144573894656
author Hussmann, Dianna
Starnawska, Anna
Kristensen, Louise
Daugaard, Iben
Thomsen, Astrid
Kjeldsen, Tina E.
Hansen, Christine Søholm
Bybjerg-Grauholm, Jonas
Johansen, Karina Dalsgaard
Ludvigsen, Maja
Kristensen, Thomas
Larsen, Thomas Stauffer
Møller, Michael Boe
Nyvold, Charlotte Guldborg
Hansen, Lise Lotte
Wojdacz, Tomasz K.
author_facet Hussmann, Dianna
Starnawska, Anna
Kristensen, Louise
Daugaard, Iben
Thomsen, Astrid
Kjeldsen, Tina E.
Hansen, Christine Søholm
Bybjerg-Grauholm, Jonas
Johansen, Karina Dalsgaard
Ludvigsen, Maja
Kristensen, Thomas
Larsen, Thomas Stauffer
Møller, Michael Boe
Nyvold, Charlotte Guldborg
Hansen, Lise Lotte
Wojdacz, Tomasz K.
author_sort Hussmann, Dianna
collection PubMed
description Currently, no molecular biomarker indices are used in standard care to make treatment decisions at diagnosis of chronic lymphocytic leukemia (CLL). We used Infinium MethylationEPIC array data from diagnostic blood samples of 114 CLL patients and developed a procedure to stratify patients based on methylation signatures associated with mutation load of the IGHV gene. This procedure allowed us to predict the time to treatment with a hazard ratio (HR) of 8.34 (95% confidence interval [CI]: 4.54-15.30), as opposed to a HR of 4.35 (95% CI: 2.60-7.28) using IGHV mutation status. Detailed evaluation of 17 cases for which the two classification procedures gave discrepant results showed that these cases were incorrectly classified using IGHV status. Moreover, methylation-based classification stratified patients with different overall survival (HR=1.82; 95% CI: 1.07-3.09), which was not possible using IGHV status. Furthermore, we assessed the performance of the developed classification procedure using published HumanMethylation450 array data for 159 patients for whom information on time to treatment, overall survival and relapse was available. Despite 450K array methylation data not containing all the biomarkers used in our classification procedure, methylation signatures again stratified patients with significantly better accuracy than did IGHV mutation load regarding all available clinical outcomes. Thus, stratification using IGHV-associated methylation signatures may provide better prognostic power than IGHV mutation status.
format Online
Article
Text
id pubmed-8968906
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Fondazione Ferrata Storti
record_format MEDLINE/PubMed
spelling pubmed-89689062022-04-11 IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load Hussmann, Dianna Starnawska, Anna Kristensen, Louise Daugaard, Iben Thomsen, Astrid Kjeldsen, Tina E. Hansen, Christine Søholm Bybjerg-Grauholm, Jonas Johansen, Karina Dalsgaard Ludvigsen, Maja Kristensen, Thomas Larsen, Thomas Stauffer Møller, Michael Boe Nyvold, Charlotte Guldborg Hansen, Lise Lotte Wojdacz, Tomasz K. Haematologica Article Currently, no molecular biomarker indices are used in standard care to make treatment decisions at diagnosis of chronic lymphocytic leukemia (CLL). We used Infinium MethylationEPIC array data from diagnostic blood samples of 114 CLL patients and developed a procedure to stratify patients based on methylation signatures associated with mutation load of the IGHV gene. This procedure allowed us to predict the time to treatment with a hazard ratio (HR) of 8.34 (95% confidence interval [CI]: 4.54-15.30), as opposed to a HR of 4.35 (95% CI: 2.60-7.28) using IGHV mutation status. Detailed evaluation of 17 cases for which the two classification procedures gave discrepant results showed that these cases were incorrectly classified using IGHV status. Moreover, methylation-based classification stratified patients with different overall survival (HR=1.82; 95% CI: 1.07-3.09), which was not possible using IGHV status. Furthermore, we assessed the performance of the developed classification procedure using published HumanMethylation450 array data for 159 patients for whom information on time to treatment, overall survival and relapse was available. Despite 450K array methylation data not containing all the biomarkers used in our classification procedure, methylation signatures again stratified patients with significantly better accuracy than did IGHV mutation load regarding all available clinical outcomes. Thus, stratification using IGHV-associated methylation signatures may provide better prognostic power than IGHV mutation status. Fondazione Ferrata Storti 2021-06-03 /pmc/articles/PMC8968906/ /pubmed/34092057 http://dx.doi.org/10.3324/haematol.2021.278477 Text en Copyright© 2022 Ferrata Storti Foundation https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Article
Hussmann, Dianna
Starnawska, Anna
Kristensen, Louise
Daugaard, Iben
Thomsen, Astrid
Kjeldsen, Tina E.
Hansen, Christine Søholm
Bybjerg-Grauholm, Jonas
Johansen, Karina Dalsgaard
Ludvigsen, Maja
Kristensen, Thomas
Larsen, Thomas Stauffer
Møller, Michael Boe
Nyvold, Charlotte Guldborg
Hansen, Lise Lotte
Wojdacz, Tomasz K.
IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
title IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
title_full IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
title_fullStr IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
title_full_unstemmed IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
title_short IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
title_sort ighv-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than ighv mutation load
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968906/
https://www.ncbi.nlm.nih.gov/pubmed/34092057
http://dx.doi.org/10.3324/haematol.2021.278477
work_keys_str_mv AT hussmanndianna ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT starnawskaanna ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT kristensenlouise ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT daugaardiben ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT thomsenastrid ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT kjeldsentinae ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT hansenchristinesøholm ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT bybjerggrauholmjonas ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT johansenkarinadalsgaard ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT ludvigsenmaja ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT kristensenthomas ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT larsenthomasstauffer ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT møllermichaelboe ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT nyvoldcharlotteguldborg ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT hansenliselotte ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload
AT wojdacztomaszk ighvassociatedmethylationsignaturesmoreaccuratelypredictclinicaloutcomesofchroniclymphocyticleukemiapatientsthanighvmutationload