Cargando…
Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics
[Image: see text] Available automated methods for peak detection in untargeted metabolomics suffer from poor precision. We present NeatMS, which uses machine learning based on a convoluted neural network to reduce the number and fraction of false peaks. NeatMS comes with a pre-trained model represen...
Autores principales: | Gloaguen, Yoann, Kirwan, Jennifer A., Beule, Dieter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969107/ https://www.ncbi.nlm.nih.gov/pubmed/35290737 http://dx.doi.org/10.1021/acs.analchem.1c02220 |
Ejemplares similares
-
WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass Spectrometry (GC-MS) Data
por: Borgsmüller, Nico, et al.
Publicado: (2019) -
PiMP my metabolome: an integrated, web-based tool for LC-MS metabolomics data
por: Gloaguen, Yoann, et al.
Publicado: (2017) -
Isotopic labeling-assisted metabolomics using LC–MS
por: Bueschl, C., et al.
Publicado: (2012) -
Comparing Targeted vs. Untargeted MS(2) Data-Dependent Acquisition for Peak Annotation in LC–MS Metabolomics
por: Ten-Doménech, Isabel, et al.
Publicado: (2020) -
Ion annotation-assisted analysis of LC-MS based metabolomic experiment
por: Varghese, Rency S, et al.
Publicado: (2012)