Cargando…

Direct visualization of interstitial flow distribution in aortic walls

Vascular smooth muscle cells are exposed to interstitial flow across aortic walls. Fluid shear stress changes the phenotype of smooth muscle cells to the synthetic type; hence, the fast interstitial flow might be related to aortic diseases. In this study, we propose a novel method to directly measur...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukui, Wataru, Ujihara, Yoshihiro, Nakamura, Masanori, Sugita, Shukei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969162/
https://www.ncbi.nlm.nih.gov/pubmed/35354879
http://dx.doi.org/10.1038/s41598-022-09304-8
Descripción
Sumario:Vascular smooth muscle cells are exposed to interstitial flow across aortic walls. Fluid shear stress changes the phenotype of smooth muscle cells to the synthetic type; hence, the fast interstitial flow might be related to aortic diseases. In this study, we propose a novel method to directly measure the interstitial flow velocity from the spatiotemporal changes in the concentration of a fluorescent dye. The lumen of a mouse thoracic aorta was filled with a fluorescent dye and pressurized in ex vivo. The flow of the fluorescent dye from the intimal to the adventitial sides was successfully visualized under a two-photon microscope. The flow velocity was determined by applying a one-dimensional advection–diffusion equation to the kymograph obtained from a series of fluorescent images. The results confirmed a higher interstitial flow velocity in the aortic walls under higher intraluminal pressure. A comparison of the interstitial flow velocity in the radial direction showed faster flow on the more intimal side, where hyperplasia is often found in hypertension. These results indicate that the proposed method can be used to visualize the interstitial flow directly and thus, determine the local interstitial flow velocity.