Cargando…
Spin-thermoelectric effects in a quantum dot hybrid system with magnetic insulator
We investigate spin thermoelectric properties of a hybrid system consisting of a single-level quantum dot attached to magnetic insulator and metal electrodes. Magnetic insulator is assumed to be of ferromagnetic type and is a source of magnons, whereas metallic lead is reservoir of electrons. The te...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969188/ https://www.ncbi.nlm.nih.gov/pubmed/35354843 http://dx.doi.org/10.1038/s41598-022-09105-z |
Sumario: | We investigate spin thermoelectric properties of a hybrid system consisting of a single-level quantum dot attached to magnetic insulator and metal electrodes. Magnetic insulator is assumed to be of ferromagnetic type and is a source of magnons, whereas metallic lead is reservoir of electrons. The temperature gradient set between the magnetic insulator and metallic electrodes induces the spin current flowing through the system. The generated spin current of magnonic (electric) type is converted to electric (magnonic) spin current by means of quantum dot. Expanding spin and heat currents flowing through the system, up to linear order, we introduce basic spin thermoelectric coefficients including spin conductance, spin Seebeck and spin Peltier coefficients and heat conductance. We analyse the spin thermoelectric properties of the system in two cases: in the large ondot Coulomb repulsion limit and when these interactions are finite. |
---|