Cargando…
DeepSpectrumLite: A Power-Efficient Transfer Learning Framework for Embedded Speech and Audio Processing From Decentralized Data
Deep neural speech and audio processing systems have a large number of trainable parameters, a relatively complex architecture, and require a vast amount of training data and computational power. These constraints make it more challenging to integrate such systems into embedded devices and utilize t...
Autores principales: | Amiriparian, Shahin, Hübner, Tobias, Karas, Vincent, Gerczuk, Maurice, Ottl, Sandra, Schuller, Björn W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969434/ https://www.ncbi.nlm.nih.gov/pubmed/35372830 http://dx.doi.org/10.3389/frai.2022.856232 |
Ejemplares similares
-
motilitAI: A machine learning framework for automatic prediction of human sperm motility
por: Ottl, Sandra, et al.
Publicado: (2022) -
Synchronization in Interpersonal Speech
por: Amiriparian, Shahin, et al.
Publicado: (2019) -
Zero-shot personalization of speech foundation models for depressed mood monitoring
por: Gerczuk, Maurice, et al.
Publicado: (2023) -
Experiments with LDA and Top2Vec for embedded topic discovery on social media data—A case study of cystic fibrosis
por: Karas, Bradley, et al.
Publicado: (2022) -
Editorial: Deep learning with limited labeled data for vision, audio, and text
por: Orescanin, Marko, et al.
Publicado: (2023)