Cargando…
Controlled Intracellular Polymerization for Cancer Treatment
[Image: see text] Numerous prodrugs have been developed and used for cancer treatments to reduce side effects and promote efficacy. In this work, we have developed a new photoactivatable prodrug system based on intracellular photoinduced electron transfer–reversible addition–fragmentation chain-tran...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970002/ https://www.ncbi.nlm.nih.gov/pubmed/35373203 http://dx.doi.org/10.1021/jacsau.1c00373 |
Sumario: | [Image: see text] Numerous prodrugs have been developed and used for cancer treatments to reduce side effects and promote efficacy. In this work, we have developed a new photoactivatable prodrug system based on intracellular photoinduced electron transfer–reversible addition–fragmentation chain-transfer (PET–RAFT) polymerization. This unique polymerization process provided a platform for the synthesis of structure-predictable polymers with well-defined structures in living cells. The intracellularly generated poly(N,N-dimethylacrylamide)s were found to induce cell cycle arrest, apoptosis, and necroptosis, inhibit cell proliferation, and reduce cancer cell motilities. This polymerization-based “prodrug” system efficiently inhibits tumor growth and metastasis both in vitro and in vivo and will promote the development of targeted and directed cancer chemotherapy. |
---|