Cargando…
Deep Learning Methods Capture Non-Linear Brain Aging Patterns Underlying Alzheimer’s Disease and Resilience
The current era of multi-omics data collection has enabled researchers to obtain exceptionally comprehensive profiling of disease subjects. However, exceptionally high dimensionality can ultimately be an obstacle to biological insight. Previously, we presented a method in which penalized regression...
Autores principales: | Thrush, Kyra, Higgins-Chen, Albert, Markov, Yaroslav, Sehgal, Raghav, Levine, Morgan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970420/ http://dx.doi.org/10.1093/geroni/igab046.1436 |
Ejemplares similares
-
Age-Associated Epigenetic Alterations, Somatic Mutations, and Their Crosstalk in Alzheimer’s Disease
por: Markov, Yaroslav, et al.
Publicado: (2021) -
Multiscale Brain Aging in the Context of Neurodegeneration and Alzheimer's Disease
por: Thrush, Kyra, et al.
Publicado: (2021) -
A Computational Solution to Bolster Epigenetic Clock Reliability for Clinical Trials and Longitudinal Tracking
por: Higgins-Chen, Albert, et al.
Publicado: (2021) -
EPIGENETIC PROFILES OF ALZHEIMER’S DISEASE
por: Thrush, Kyra, et al.
Publicado: (2019) -
Systems aging clock: A novel epigenetic aging clock modeled from organ & bodily function based mortality indices
por: Sehgal, Raghav, et al.
Publicado: (2021)