Cargando…
An analysis framework for clustering algorithm selection with applications to spectroscopy
Cluster analysis is a valuable unsupervised machine learning technique that is applied in a multitude of domains to identify similarities or clusters in unlabelled data. However, its performance is dependent of the characteristics of the data it is being applied to. There is no universally best clus...
Autores principales: | Crase, Simon, Thennadil, Suresh N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970496/ https://www.ncbi.nlm.nih.gov/pubmed/35358292 http://dx.doi.org/10.1371/journal.pone.0266369 |
Ejemplares similares
-
jClustering, an Open Framework for the Development of 4D Clustering Algorithms
por: Mateos-Pérez, José María, et al.
Publicado: (2013) -
Microbial corrosion of DSS 2205 in an acidic chloride environment under continuous flow
por: Tran, Thi Thuy Tien, et al.
Publicado: (2021) -
Application of Optimization Algorithms in Clusters
por: Srivastava, Ruby
Publicado: (2021) -
Data clustering: algorithms and applications
por: Aggarwal, Charu C
Publicado: (2013) -
Effective feature selection framework for cluster analysis of microarray data
por: Pok, Gouchol, et al.
Publicado: (2010)