Cargando…
Automatic COVID-19 detection mechanisms and approaches from medical images: a systematic review
Since early 2020, Coronavirus Disease 2019 (COVID-19) has spread widely around the world. COVID-19 infects the lungs, leading to breathing difficulties. Early detection of COVID-19 is important for the prevention and treatment of pandemic. Numerous sources of medical images (e.g., Chest X-Rays (CXR)...
Autores principales: | Rahmani, Amir Masoud, Azhir, Elham, Naserbakht, Morteza, Mohammadi, Mokhtar, Aldalwie, Adil Hussein Mohammed, Majeed, Mohammed Kamal, Taher Karim, Sarkhel H., Hosseinzadeh, Mehdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970643/ https://www.ncbi.nlm.nih.gov/pubmed/35382107 http://dx.doi.org/10.1007/s11042-022-12952-7 |
Ejemplares similares
-
Correction to: Automatic COVID-19 detection mechanisms and approaches from medical images: a systematic review
por: Rahmani, Amir Masoud, et al.
Publicado: (2022) -
Artificial intelligence approaches and mechanisms for big data analytics: a systematic study
por: Rahmani, Amir Masoud, et al.
Publicado: (2021) -
DCNN-FuzzyWOA: Artificial Intelligence Solution for Automatic Detection of COVID-19 Using X-Ray Images
por: Saffari, Abbas, et al.
Publicado: (2022) -
RETRACTED ARTICLE: Evolving deep convolutional neutral network by hybrid sine–cosine and extreme learning machine for real-time COVID19 diagnosis from X-ray images
por: Wu, Chao, et al.
Publicado: (2021) -
Real‑time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm
por: Hu, Tianqing, et al.
Publicado: (2021)