Cargando…

A Deep Learning Radiomics Analysis for Survival Prediction in Esophageal Cancer

The purpose of this study was to explore the deep learning radiomics (DLR) nomogram to predict the overall 3-year survival after chemoradiotherapy in patients with esophageal cancer. The 154 patients' data were used in this study, which was randomly split into training (116) and validation (38)...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Junxiu, Zeng, Jianchao, Li, Hongwei, Yu, Xiaoqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970800/
https://www.ncbi.nlm.nih.gov/pubmed/35368956
http://dx.doi.org/10.1155/2022/4034404
Descripción
Sumario:The purpose of this study was to explore the deep learning radiomics (DLR) nomogram to predict the overall 3-year survival after chemoradiotherapy in patients with esophageal cancer. The 154 patients' data were used in this study, which was randomly split into training (116) and validation (38) data. Deep learning and handcrafted features were obtained via the preprocessing diagnostic computed tomography images. The selected features were used to construct radiomics signatures through the least absolute shrinkage and selection operator (LASSO) regression, maximizing relevance while minimizing redundancy. The DLR signature, handcrafted features' radiomics (HCR) signature, and clinical factors were incorporated to develop a DLR nomogram. The DLR nomogram was evaluated in terms of discrimination and calibration with comparison to the HCR signature-based radiomics model. The experimental results showed the outperforming discrimination ability of the proposed DLR over the HCR model in terms of Harrel's concordance index, 0.76 and 0.784, for training and validation sets, respectively. Also, the proposed DLR nomogram calibrates and classifies better than the HCR model in terms of AUC, 0.984 (vs. 0.797) and 0.942 (vs. 0.665) for training and validation sets, respectively. Furthermore, the nomogram-predicted Kaplan–Meier survival (KMS) curves differed significantly from the nonsurvival groups in the log-rank test (p value <0.05). The proposed DLR model based on conventional CT images showed the outperforming performance over the HCR signature model in noninvasively individualized prediction of the 3-year survival rate in esophageal cancer patients. The proposed model can potentially provide prognostic information that guides and helps the clinical decisions between observation and treatment.