Cargando…

A Novel NCSTN Mutation in a Three-Generation Chinese Family with Hidradenitis Suppurative

OBJECTIVE: Hidradenitis suppurativa (HS) is a rare autosomal dominant condition characterized by inflamed nodules, cysts, deep abscesses, draining sinuses in the axillae, inguinal, and anogenital regions. Mutations in the NCSTN gene have been perceived to be responsible for the major underlying chan...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chengling, Liu, Xingchen, Wang, Rui, Chen, Lang, Zhao, Hua, Zhou, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970804/
https://www.ncbi.nlm.nih.gov/pubmed/35368949
http://dx.doi.org/10.1155/2022/1540774
Descripción
Sumario:OBJECTIVE: Hidradenitis suppurativa (HS) is a rare autosomal dominant condition characterized by inflamed nodules, cysts, deep abscesses, draining sinuses in the axillae, inguinal, and anogenital regions. Mutations in the NCSTN gene have been perceived to be responsible for the major underlying changes in the disorder. The purpose of this study is to identify a novel gene mutation in a Chinese family with HS. METHODS: A Chinese family with HS present was investigated. The proband had manifested with multiple draining sinuses on the posterior neck, chest, bilateral axillae, and perineal regions. DNA was isolated from the peripheral blood of the family members. The encoding exons with introns of the NCSTN gene were analyzed by polymerase chain reactions (PCR) and direct DNA sequencing. Sanger sequencing was performed to confirm the next-generation sequencing results and to analyze each mutation's familial segregation. Furthermore, the identified mutation was localized onto a 3D structure model using the DeepView Swiss-PdbViewer 4.1 software. RESULTS: In this family comprising 10 HS patients, one novel mutation of the NCSTN gene was identified, involving a deletion mutation (c.447delC(p.N150Ifs∗52)) in the NCSTN gene resulting in a frameshift and the new formation of a hydrogen bond. CONCLUSION: Our study reports the identification of a novel mutation that causes familial HS and could expand the spectrum of mutations in the γ-secretase genes underlying HS.