Cargando…
Attentional Mechanisms and Improved Residual Networks for Diabetic Retinopathy Severity Classification
Diabetic retinopathy is a main cause of blindness in diabetic patients; therefore, detection and treatment of diabetic retinopathy at an early stage has an important effect on delaying and avoiding vision loss. In this paper, we propose a feasible solution for diabetic retinopathy classification usi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970848/ https://www.ncbi.nlm.nih.gov/pubmed/35368918 http://dx.doi.org/10.1155/2022/9585344 |
Sumario: | Diabetic retinopathy is a main cause of blindness in diabetic patients; therefore, detection and treatment of diabetic retinopathy at an early stage has an important effect on delaying and avoiding vision loss. In this paper, we propose a feasible solution for diabetic retinopathy classification using ResNet as the backbone network. By modifying the structure of the residual blocks and improving the downsampling level, we can increase the feature information of the hidden layer feature maps. In addition, attention mechanism is utilized to enhance the feature extraction effect. The experimental results show that the proposed model can effectively detect and classify diabetic retinopathy and achieve better results than the original model. |
---|