Cargando…
Classifying Driving Fatigue by Using EEG Signals
Fatigue driving is one of the main reasons for the occurrence of traffic accidents. Brain-computer interface, as a human-computer interaction method based on EEG signals, can communicate with the outside world and move freely through brain signals without relying on the peripheral neuromuscular syst...
Autores principales: | Zeng, Changqing, Mu, Zhendong, Wang, Qingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8970926/ https://www.ncbi.nlm.nih.gov/pubmed/35371255 http://dx.doi.org/10.1155/2022/1885677 |
Ejemplares similares
-
Application of Graph Neural Network in Driving Fatigue Detection Based on EEG Signals
por: Mu, Zhendong, et al.
Publicado: (2022) -
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
por: Hu, Jianfeng
Publicado: (2017) -
Directed Brain Network Analysis for Fatigue Driving Based on EEG Source Signals
por: Qin, Yingmei, et al.
Publicado: (2022) -
Driving Fatigue Detection from EEG Using a Modified PCANet Method
por: Ma, Yuliang, et al.
Publicado: (2019) -
A Novel Fatigue Driving State Recognition and Warning Method Based on EEG and EOG Signals
por: Liu, Li, et al.
Publicado: (2021)