Cargando…
A union of deep learning and swarm-based optimization for 3D human action recognition
Human Action Recognition (HAR) is a popular area of research in computer vision due to its wide range of applications such as surveillance, health care, and gaming, etc. Action recognition based on 3D skeleton data allows simplistic, cost-efficient models to be formed making it a widely used method....
Autores principales: | Basak, Hritam, Kundu, Rohit, Singh, Pawan Kumar, Ijaz, Muhammad Fazal, Woźniak, Marcin, Sarkar, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971421/ https://www.ncbi.nlm.nih.gov/pubmed/35361804 http://dx.doi.org/10.1038/s41598-022-09293-8 |
Ejemplares similares
-
Fuzzy rank-based fusion of CNN models using Gompertz function for screening COVID-19 CT-scans
por: Kundu, Rohit, et al.
Publicado: (2021) -
SnapEnsemFS: a snapshot ensembling-based deep feature selection model for colorectal cancer histological analysis
por: Chattopadhyay, Soumitri, et al.
Publicado: (2023) -
Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring
por: Bhattacharya, Debarshi, et al.
Publicado: (2022) -
A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification
por: Mandal, Moumita, et al.
Publicado: (2021) -
A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases
por: Dhaka, Vijaypal Singh, et al.
Publicado: (2021)