Cargando…
Multi-class sentiment analysis of urdu text using multilingual BERT
Sentiment analysis (SA) is an important task because of its vital role in analyzing people’s opinions. However, existing research is solely based on the English language with limited work on low-resource languages. This study introduced a new multi-class Urdu dataset based on user reviews for sentim...
Autores principales: | Khan, Lal, Amjad, Ammar, Ashraf, Noman, Chang, Hsien-Tsung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971433/ https://www.ncbi.nlm.nih.gov/pubmed/35361890 http://dx.doi.org/10.1038/s41598-022-09381-9 |
Ejemplares similares
-
Multi-label emotion classification of Urdu tweets
por: Ashraf, Noman, et al.
Publicado: (2022) -
The ambivalent role of Urdu and English in multilingual Pakistan: a Bourdieusian study
por: Ashraf, Hina
Publicado: (2022) -
SentiUrdu-1M: A large-scale tweet dataset for Urdu text sentiment analysis using weakly supervised learning
por: Ghafoor, Abdul, et al.
Publicado: (2023) -
Multilingual text categorization and sentiment analysis: a comparative analysis of the utilization of multilingual approaches for classifying twitter data
por: Manias, George, et al.
Publicado: (2023) -
A BERT-Based Aspect-Level Sentiment Analysis Algorithm for Cross-Domain Text
por: Liu, Ning, et al.
Publicado: (2022)