Cargando…
Predicting non-response to multimodal day clinic treatment in severely impaired depressed patients: a machine learning approach
A considerable number of depressed patients do not respond to treatment. Accurate prediction of non-response to routine clinical care may help in treatment planning and improve results. A longitudinal sample of N = 239 depressed patients was assessed at admission to multi-modal day clinic treatment,...
Autores principales: | Vetter, Johannes Simon, Schultebraucks, Katharina, Galatzer-Levy, Isaac, Boeker, Heinz, Brühl, Annette, Seifritz, Erich, Kleim, Birgit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971434/ https://www.ncbi.nlm.nih.gov/pubmed/35361809 http://dx.doi.org/10.1038/s41598-022-09226-5 |
Ejemplares similares
-
Differential Alterations in Resting State Functional Connectivity Associated with Depressive Symptoms and Early Life Adversity
por: Fadel, Eleonora, et al.
Publicado: (2021) -
SIMON: A Digital Protocol to Monitor and Predict Suicidal Ideation
por: Sels, Laura, et al.
Publicado: (2021) -
Validation of Visual and Auditory Digital Markers of Suicidality in Acutely Suicidal Psychiatric Inpatients: Proof-of-Concept Study
por: Galatzer-Levy, Isaac, et al.
Publicado: (2021) -
Forecasting individual risk for long-term Posttraumatic Stress Disorder in emergency medical settings using biomedical data: A machine learning multicenter cohort study
por: Schultebraucks, Katharina, et al.
Publicado: (2021) -
Neuroimaging Correlates of Resilience to Traumatic Events—A Comprehensive Review
por: Bolsinger, Julia, et al.
Publicado: (2018)