Cargando…
A framework for rigorous evaluation of human performance in human and machine learning comparison studies
Rigorous comparisons of human and machine learning algorithm performance on the same task help to support accurate claims about algorithm success rates and advances understanding of their performance relative to that of human performers. In turn, these comparisons are critical for supporting advance...
Autores principales: | Cowley, Hannah P., Natter, Mandy, Gray-Roncal, Karla, Rhodes, Rebecca E., Johnson, Erik C., Drenkow, Nathan, Shead, Timothy M., Chance, Frances S., Wester, Brock, Gray-Roncal, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971503/ https://www.ncbi.nlm.nih.gov/pubmed/35361786 http://dx.doi.org/10.1038/s41598-022-08078-3 |
Ejemplares similares
-
Author Correction: A framework for rigorous evaluation of human performance in human and machine learning comparison studies
por: Cowley, Hannah P., et al.
Publicado: (2022) -
Benchmarking Human Performance for Visual Search of Aerial Images
por: Rhodes, Rebecca E., et al.
Publicado: (2021) -
A substrate for modular, extensible data-visualization
por: Matelsky, Jordan K., et al.
Publicado: (2020) -
Toward a scalable framework for reproducible processing of volumetric, nanoscale neuroimaging datasets
por: Johnson, Erik C, et al.
Publicado: (2020) -
Connectomics Annotation Metadata Standardization for Increased Accessibility and Queryability
por: Sanchez, Morgan, et al.
Publicado: (2022)