Cargando…

Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network

Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a ze...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, Kyung In, Chang, Shyr-Shea, Chang, Chih-Chiang, Roustaei, Mehrdad, Ding, Yichen, Wang, Yixuan, Chen, Justin, O'Donnell, Ryan, Chen, Hong, Ashby, Julianne W., Xu, Xiaolei, Mack, Julia J., Cavallero, Susana, Roper, Marcus, Hsiai, Tzung K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971683/
https://www.ncbi.nlm.nih.gov/pubmed/35369301
http://dx.doi.org/10.3389/fcvm.2022.841101
_version_ 1784679688775401472
author Baek, Kyung In
Chang, Shyr-Shea
Chang, Chih-Chiang
Roustaei, Mehrdad
Ding, Yichen
Wang, Yixuan
Chen, Justin
O'Donnell, Ryan
Chen, Hong
Ashby, Julianne W.
Xu, Xiaolei
Mack, Julia J.
Cavallero, Susana
Roper, Marcus
Hsiai, Tzung K.
author_facet Baek, Kyung In
Chang, Shyr-Shea
Chang, Chih-Chiang
Roustaei, Mehrdad
Ding, Yichen
Wang, Yixuan
Chen, Justin
O'Donnell, Ryan
Chen, Hong
Ashby, Julianne W.
Xu, Xiaolei
Mack, Julia J.
Cavallero, Susana
Roper, Marcus
Hsiai, Tzung K.
author_sort Baek, Kyung In
collection PubMed
description Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation.
format Online
Article
Text
id pubmed-8971683
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89716832022-04-02 Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network Baek, Kyung In Chang, Shyr-Shea Chang, Chih-Chiang Roustaei, Mehrdad Ding, Yichen Wang, Yixuan Chen, Justin O'Donnell, Ryan Chen, Hong Ashby, Julianne W. Xu, Xiaolei Mack, Julia J. Cavallero, Susana Roper, Marcus Hsiai, Tzung K. Front Cardiovasc Med Cardiovascular Medicine Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation. Frontiers Media S.A. 2022-03-18 /pmc/articles/PMC8971683/ /pubmed/35369301 http://dx.doi.org/10.3389/fcvm.2022.841101 Text en Copyright © 2022 Baek, Chang, Chang, Roustaei, Ding, Wang, Chen, O'Donnell, Chen, Ashby, Xu, Mack, Cavallero, Roper and Hsiai. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Baek, Kyung In
Chang, Shyr-Shea
Chang, Chih-Chiang
Roustaei, Mehrdad
Ding, Yichen
Wang, Yixuan
Chen, Justin
O'Donnell, Ryan
Chen, Hong
Ashby, Julianne W.
Xu, Xiaolei
Mack, Julia J.
Cavallero, Susana
Roper, Marcus
Hsiai, Tzung K.
Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
title Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
title_full Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
title_fullStr Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
title_full_unstemmed Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
title_short Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
title_sort vascular injury in the zebrafish tail modulates blood flow and peak wall shear stress to restore embryonic circular network
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971683/
https://www.ncbi.nlm.nih.gov/pubmed/35369301
http://dx.doi.org/10.3389/fcvm.2022.841101
work_keys_str_mv AT baekkyungin vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT changshyrshea vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT changchihchiang vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT roustaeimehrdad vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT dingyichen vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT wangyixuan vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT chenjustin vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT odonnellryan vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT chenhong vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT ashbyjuliannew vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT xuxiaolei vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT mackjuliaj vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT cavallerosusana vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT ropermarcus vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork
AT hsiaitzungk vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork