Cargando…
Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network
Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a ze...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971683/ https://www.ncbi.nlm.nih.gov/pubmed/35369301 http://dx.doi.org/10.3389/fcvm.2022.841101 |
_version_ | 1784679688775401472 |
---|---|
author | Baek, Kyung In Chang, Shyr-Shea Chang, Chih-Chiang Roustaei, Mehrdad Ding, Yichen Wang, Yixuan Chen, Justin O'Donnell, Ryan Chen, Hong Ashby, Julianne W. Xu, Xiaolei Mack, Julia J. Cavallero, Susana Roper, Marcus Hsiai, Tzung K. |
author_facet | Baek, Kyung In Chang, Shyr-Shea Chang, Chih-Chiang Roustaei, Mehrdad Ding, Yichen Wang, Yixuan Chen, Justin O'Donnell, Ryan Chen, Hong Ashby, Julianne W. Xu, Xiaolei Mack, Julia J. Cavallero, Susana Roper, Marcus Hsiai, Tzung K. |
author_sort | Baek, Kyung In |
collection | PubMed |
description | Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation. |
format | Online Article Text |
id | pubmed-8971683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89716832022-04-02 Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network Baek, Kyung In Chang, Shyr-Shea Chang, Chih-Chiang Roustaei, Mehrdad Ding, Yichen Wang, Yixuan Chen, Justin O'Donnell, Ryan Chen, Hong Ashby, Julianne W. Xu, Xiaolei Mack, Julia J. Cavallero, Susana Roper, Marcus Hsiai, Tzung K. Front Cardiovasc Med Cardiovascular Medicine Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation. Frontiers Media S.A. 2022-03-18 /pmc/articles/PMC8971683/ /pubmed/35369301 http://dx.doi.org/10.3389/fcvm.2022.841101 Text en Copyright © 2022 Baek, Chang, Chang, Roustaei, Ding, Wang, Chen, O'Donnell, Chen, Ashby, Xu, Mack, Cavallero, Roper and Hsiai. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cardiovascular Medicine Baek, Kyung In Chang, Shyr-Shea Chang, Chih-Chiang Roustaei, Mehrdad Ding, Yichen Wang, Yixuan Chen, Justin O'Donnell, Ryan Chen, Hong Ashby, Julianne W. Xu, Xiaolei Mack, Julia J. Cavallero, Susana Roper, Marcus Hsiai, Tzung K. Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network |
title | Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network |
title_full | Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network |
title_fullStr | Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network |
title_full_unstemmed | Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network |
title_short | Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network |
title_sort | vascular injury in the zebrafish tail modulates blood flow and peak wall shear stress to restore embryonic circular network |
topic | Cardiovascular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971683/ https://www.ncbi.nlm.nih.gov/pubmed/35369301 http://dx.doi.org/10.3389/fcvm.2022.841101 |
work_keys_str_mv | AT baekkyungin vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT changshyrshea vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT changchihchiang vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT roustaeimehrdad vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT dingyichen vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT wangyixuan vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT chenjustin vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT odonnellryan vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT chenhong vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT ashbyjuliannew vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT xuxiaolei vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT mackjuliaj vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT cavallerosusana vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT ropermarcus vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork AT hsiaitzungk vascularinjuryinthezebrafishtailmodulatesbloodflowandpeakwallshearstresstorestoreembryoniccircularnetwork |